language-icon Old Web
English
Sign In

Australopithecus afarensis

Australopithecus afarensis (Latin: 'Southern ape from Afar') is an extinct hominin that lived between 3.9 and 2.9 million years ago in Africa. A. afarensis was slenderly built, like the younger Australopithecus africanus. A. afarensis is thought to be more closely related to the genus Homo (which includes the modern human species Homo sapiens), whether as a direct ancestor or a close relative of an unknown ancestor, than any other known primate from the same time. Some researchers include A. afarensis in the genus Praeanthropus. The most famous fossil is the partial skeleton named Lucy (3.2 million years old) found by Donald Johanson, Yves Coppens and Maurice Taïeb, who, in celebration of their find, repeatedly played the Beatles song 'Lucy in the Sky with Diamonds'. Australopithecus afarensis fossils have only been discovered within Eastern Africa. Despite Laetoli being the type locality for A. afarensis, the most extensive remains assigned to the species are found in Hadar, Afar Region of Ethiopia, including the above-mentioned 'Lucy' partial skeleton and the 'First Family' found at the AL 333 locality. Other localities bearing A. afarensis remains include Omo, Maka, Fejej, and Belohdelie in Ethiopia, and Koobi Fora and Lothagam in Kenya. Compared to the modern and extinct great apes, A. afarensis has reduced canines and molars, although they are still relatively larger than in modern humans. A. afarensis also has a relatively small brain size (about 380–430 cm3) and a prognathic face (i.e. a face with forward-projecting jaws). Considerable debate surrounds the locomotor behaviour of A. afarensis. Some studies suggest that A. afarensis was almost exclusively bipedal, while others propose that the creatures were partly arboreal. The anatomy of the hands, feet, and shoulder joints in many ways favour the latter interpretation. In particular, the morphology of the scapula appears to be ape-like and very different from modern humans. The curvature of the finger and toe bones (phalanges) approaches that of modern-day apes, and is suggestive of their ability to efficiently grasp branches and climb. Alternatively, the loss of an abductable great toe and therefore the ability to grasp with the foot (a feature of all other primates) suggests A. afarensis was no longer adapted to climbing. A number of traits in the A. afarensis skeleton strongly reflect bipedalism, to the extent some researchers have suggested bipedality evolved long before A. afarensis. In overall anatomy, the pelvis is far more human-like than ape-like. The iliac blades are short and wide, the sacrum is wide and positioned directly behind the hip joint, and evidence of a strong attachment for the knee extensors is clear. While the pelvis is not wholly human-like (being markedly wide, or flared, with laterally oriented iliac blades), these features point to a structure that can be considered radically remodeled to accommodate a significant degree of bipedalism in the animals' locomotor repertoire. Importantly, the femur also angles in toward the knee from the hip. This trait would have allowed the foot to have fallen closer to the midline of the body, and is a strong indication of habitual bipedal locomotion. The feet also feature adducted big toes, making it difficult if not impossible to grasp branches with the hindlimbs. The loss of a grasping hindlimb also increases the risk of an infant being dropped or falling, as primates typically hold onto their mothers while the mother goes about her daily business. Without the second set of grasping limbs, the infant cannot maintain as strong a grip, and likely had to be held with help from the mother. The problem of holding the infant would be multiplied if the mother also had to climb trees. Bones of the foot (such as the calcaneus) also indicate bipedality. Computer simulations using dynamic modeling of the skeleton's inertial properties and kinematics suggest A. afarensis was able to walk in the same way modern humans walk, with a normal erect gait or with bent hips and knees, but could not walk in the same way as chimpanzees. The upright gait would have been much more efficient than the bent knee and hip walking, which would have taken twice as much energy.

[ "Anthropology", "Anatomy", "Paleontology", "Evolutionary biology", "Australopithecus anamensis", "Australopithecus deyiremeda", "Paranthropus aethiopicus", "Platyops", "Australopithecus garhi" ]
Parent Topic
Child Topic
    No Parent Topic