language-icon Old Web
English
Sign In

Mach's principle

In theoretical physics, particularly in discussions of gravitation theories, Mach's principle (or Mach's conjecture) is the name given by Einstein to an imprecise hypothesis often credited to the physicist and philosopher Ernst Mach. The idea is that the existence of absolute rotation (the distinction of local inertial frames vs. rotating reference frames) is determined by the large-scale distribution of matter, as exemplified by this anecdote:You are standing in a field looking at the stars. Your arms are resting freely at your side, and you see that the distant stars are not moving. Now start spinning. The stars are whirling around you and your arms are pulled away from your body. Why should your arms be pulled away when the stars are whirling? Why should they be dangling freely when the stars don't move?The basic idea also appears before Mach's time, in the writings of George Berkeley. The book Absolute or Relative Motion? (1896) by Benedict Friedländer and his brother Immanuel contained ideas similar to Mach's principle.There is a fundamental issue in relativity theory. If all motion is relative, how can we measure the inertia of a body? We must measure the inertia with respect to something else. But what if we imagine a particle completely on its own in the universe? We might hope to still have some notion of its state of motion. Mach's principle is sometimes interpreted as the statement that such a particle's state of motion has no meaning in that case. investigator must feel the need of... knowledge of the immediate connections, say, of the masses of the universe. There will hover before him as an ideal insight into the principles of the whole matter, from which accelerated and inertial motions will result in the same way....inertia originates in a kind of interaction between bodies...one can always decide if one is rotating with respect to the absolute space, measuring the apparent forces that arise only when an absolute rotation is performed. If a bucket is filled with water, and made to rotate, initially the water remains still, but then, gradually, the walls of the vessel communicate their motion to the water, making it curve and climb up the borders of the bucket, because of the centrifugal forces produced by the rotation.This thought experiment demonstrates that the centrifugal forces arise only when the water is in rotation with respect to the absolute space (represented here by the earth's reference frame, or better, the distant stars) instead, when the bucket was rotating with respect to the water no centrifugal forces were produced, this indicating that the latter was still with respect to the absolute space.the bucket experiment only demonstrates that when the water is in rotation with respect to the bucket no centrifugal forces are produced, and that we cannot know how the water would behave if in the experiment the bucket's walls were increased in depth and width until they became leagues big. In Mach's idea this concept of absolute motion should be substituted with a total relativism in which every motion, uniform or accelerated, has sense only in reference to other bodies (i.e., one cannot simply say that the water is rotating, but must specify if it's rotating with respect to the vessel or to the earth). In this view, the apparent forces that seem to permit discrimination between relative and 'absolute' motions should only be considered as an effect of the particular asymmetry that there is in our reference system between the bodies which we consider in motion, that are small (like buckets), and the bodies that we believe are still (the earth and distant stars), that are overwhelmingly bigger and heavier than the former.Because intuitive notions of distance and time no longer apply, what exactly is meant by 'Mach's principle' in general relativity is even less clear than in Newtonian physics and at least 21 formulations of Mach's principle are possible, some being considered more strongly Machian than others. A relatively weak formulation is the assertion that the motion of matter in one place should affect which frames are inertial in another.it... turns out that inertia originates in a kind of interaction between bodies, quite in the sense of your considerations on Newton's pail experiment... If one rotates relative to the fixed stars about an axis going through its center, a Coriolis force arises in the interior of the shell; that is, the plane of a Foucault pendulum is dragged around (with a practically unmeasurably small angular velocity).So strongly did Einstein believe at that time in the relativity of inertia that in 1918 he stated as being on an equal footing three principles on which a satisfactory theory of gravitation should rest:The broad notion that 'mass there influences inertia here' has been expressed in several forms.Hermann Bondi and Joseph Samuel have listed eleven distinct statements that can be called Mach principles, labelled by Mach0 through Mach10. Though their list is not necessarily exhaustive, it does give a flavor for the variety possible.

[ "Gravitation", "Einstein", "General relativity", "Theory of relativity", "Mach number" ]
Parent Topic
Child Topic
    No Parent Topic