language-icon Old Web
English
Sign In

Mammoth steppe

During the Last Glacial Maximum, the mammoth steppe was the Earth’s most extensive biome. It spanned from Spain eastwards across Eurasia to Canada and from the arctic islands southwards to China. It had a cold, dry climate; the vegetation was dominated by palatable high-productivity grasses, herbs and willow shrubs, and the animal biomass was dominated by the bison, horse, and the woolly mammoth. This ecosystem covered wide areas of the northern part of the globe, thrived for approximately 100,000 years without major changes, and then suddenly became all but extinct about 12,000 years ago.Artemisia, Taymyr lowlands 24,000–10,300 YBP, Yakutia 22,500 YBP, Alaska and the Yukon 15,000-11,500 YBPCyperaceae (sedges), Yakutia 22,500 YBP, Alaska and the Yukon 15,000-11,500 YBPGramineae (grasses), Taymyr lowlands 24,000–10,300 YBP, Yakutia 22,500 YBP, Alaska and the Yukon 15,000-11,500 YBPSalix (willow), Taymyr lowlands 24,000–10,300 YBP, Yakutia 22,500 YBP, Alaska and the Yukon 15,000-11,500 YBPRubus chamaemorus (cloudberry) Yakutia 22,500 YBPPotentilla (cinquefoil) Yakutia 22,500 YBPLarch Taymyr lowlands 48,000–25,000 YBP, then later 9,400-2,900 YBPBetula nana (dwarf birch) Taymyr lowlands 48,000–25,000 YBP During the Last Glacial Maximum, the mammoth steppe was the Earth’s most extensive biome. It spanned from Spain eastwards across Eurasia to Canada and from the arctic islands southwards to China. It had a cold, dry climate; the vegetation was dominated by palatable high-productivity grasses, herbs and willow shrubs, and the animal biomass was dominated by the bison, horse, and the woolly mammoth. This ecosystem covered wide areas of the northern part of the globe, thrived for approximately 100,000 years without major changes, and then suddenly became all but extinct about 12,000 years ago. At the end of the 19th century, Alfred Nehring (1890) and Jan Czerski (Iwan Dementjewitsch Chersky, 1891) proposed that during the last glacial period a major part of northern Europe had been populated by large herbivores and that a steppe climate had prevailed there. In 1982, the scientist R. Dale Guthrie coined the term 'mammoth steppe' for this paleoregion. The last glacial period, commonly referred to as the 'Ice Age', spanned from 126,000 YBP–11,700 YBP and was the most recent glacial period within the current ice age which occurred during the last years of the Pleistocene epoch. This arctic environment was very cold and dry and probably dusty, resembling mountaintop environments, and was very different from today's swampy tundra. It reached its peak during the last glacial maximum, when ice sheets commenced advancing from 33,000 years BP and reached their maximum positions 26,500 years BP. Deglaciation commenced in the Northern Hemisphere approximately 19,000 years BP, and in Antarctica approximately 14,500 years BP, which is consistent with evidence that it was the primary source for an abrupt rise in the sea level at that time. During the peak of the last glacial maximum, a vast mammoth steppe stretched from the Iberian Peninsula across Eurasia and over the Bering land bridge into Alaska and the Yukon where it was stopped by the Wisconsin glaciation. This land bridge existed because more of the planet's water was locked up in ice than now and therefore the sea levels were lower. When the sea levels began to rise this bridge was inundated around 11,000 years BP. During glacial periods, there is clear evidence for intense aridity due to water being held in glaciers and their associated effects on climate. The mammoth steppe was like a huge 'inner court' that was surrounded on all sides by moisture-blocking features: massive continental glaciers, high mountains, and frozen seas. These kept rainfall low and created more days with clear skies than are seen today, which increased evaporation in the summer leading to aridity, and radiation of warmth from the ground into the black night sky in the winter leading to cold. This is thought to have been caused by seven factors: Animal biomass and plant productivity of the mammoth steppe were similar to today's African savannah. There is no comparison to it today. The paleo-environment changed across time, a proposal that is supported from mammoth dung samples found in northern Yakutia. During Pleniglacial interstadials, alder, birch, and pine trees survived in northern Siberia, however during the Last Glacial Maximum only a treeless steppe vegetation existed. At the onset of the Late Glacial Interstadial (15,000–11,000 BP), global warming resulted in shrub and dwarf birch in northeastern Siberia, which was then colonized by open woodland with birch and spruce during the Younger Dryas (12,900–11,700 YBP). By the Holocene (10,000 YBP), patches of closed larch and pine forests developed. Past researchers had once assumed that the mammoth steppe was very unproductive because they had assumed that its soils had a very low carbon content; however, these soils (yedoma) were preserved in the permafrost of Siberia and Alaska and are the largest reservoir of organic carbon known. It was a highly productive environment. The vegetation was dominated by palatable high-productivity grasses, herbs and willow shrubs. Herbs were far more widespread than they are today, and were the main food source of the large plant eating mammals. The mammoth steppe was dominated in biomass by bison, horse, and the woolly mammoth, and was the center for the evolution of the Pleistocene woolly fauna. On Wrangel Island, the remains of woolly mammoth, woolly rhinoceros, horse, bison and musk ox have been found. Reindeer and small animal remains do not preserve, but reindeer excrement has been found in sediment. In the most arid regions of the mammoth steppe that were to the south of Central Siberia and Mongolia, woolly rhinoceros were common but woolly mammoths were rare. Reindeer live in the far north of Mongolia today and historically their southern boundary passed through Germany and along the steppes of eastern Europe, indicating they once covered much of the mammoth steppe. Mammoths survived on the Taimyr Peninsula until the Holocene. A small population of mammoths survived on St. Paul Island, Alaska, up until 3750 BC, and the small mammoths of Wrangel Island survived until 1650 BC. Bison in Alaska and the Yukon, and horses and muskox in northern Siberia, have survived the loss of the mammoth steppe. One study has proposed that a change of suitable climate caused a significant drop in the mammoth population size, which made them vulnerable to hunting from expanding human populations. The coincidence of both of these impacts in the Holocene most likely set the place and time for the extinction of the woolly mammoth. The mammoth steppe had a cold, dry climate. During the past interglacial warmings, forests of trees and shrubs expanded northwards into the mammoth steppe, when northern Siberia, Alaska and the Yukon (Beringia) would have formed a mammoth steppe refugium. When the planet grew colder again, the mammoth steppe expanded. This ecosystem covered wide areas of the northern part of the globe, thrived for approximately 100,000 years without major changes, and then suddenly became extinct about 12,000 years ago.

[ "Last Glacial Maximum", "Tundra" ]
Parent Topic
Child Topic
    No Parent Topic