language-icon Old Web
English
Sign In

Microrheology

Microrheology is a technique used to measure the rheological properties of a medium, such as microviscosity, via the measurement of the trajectory of a flow tracer (a micrometre-sized particle). It is a new way of doing rheology, traditionally done using a rheometer. There are two types of microrheology: passive microrheology and active microrheology. Passive microrheology uses inherent thermal energy to move the tracers, whereas active microrheology uses externally applied forces, such as from a magnetic field or an optical tweezer, to do so. Microrheology can be further differentiated into 1- and 2-particle methods.Typical trajectory of a Brownian particle (simulation)Two examples of MSD: one for a purely viscous fluid (free diffusion) and one for a viscolelastic fluid (trapped by elastic network)Animation of a particle in a polymer-like network Microrheology is a technique used to measure the rheological properties of a medium, such as microviscosity, via the measurement of the trajectory of a flow tracer (a micrometre-sized particle). It is a new way of doing rheology, traditionally done using a rheometer. There are two types of microrheology: passive microrheology and active microrheology. Passive microrheology uses inherent thermal energy to move the tracers, whereas active microrheology uses externally applied forces, such as from a magnetic field or an optical tweezer, to do so. Microrheology can be further differentiated into 1- and 2-particle methods. Passive microrheology uses the thermal energy (kT) to move the tracers, although recent evidence suggests that active random forces inside cells may instead move the tracers in a diffusive-like manner. The trajectories of the tracers are measured optically either by microscopy or by diffusing-wave spectroscopy (DWS). From the mean squared displacement with respect to time (noted MSD or <Δr2> ), one can calculate the visco-elastic moduli G′(ω) and G″(ω) using the generalized Stokes–Einstein relation (GSER). Here is a view of the trajectory of a particle of micrometer size.

[ "Particle", "Viscosity", "Viscoelasticity", "Rheology" ]
Parent Topic
Child Topic
    No Parent Topic