language-icon Old Web
English
Sign In

Thymol

Thymol (also known as 2-isopropyl-5-methylphenol, IPMP) is a natural monoterpenoid phenol derivative of cymene, C10H14O, isomeric with carvacrol, found in oil of thyme, and extracted from Thymus vulgaris (common thyme), Ajwain and various other kinds of plants as a white crystalline substance of a pleasant aromatic odor and strong antiseptic properties. Thymol also provides the distinctive, strong flavor of the culinary herb thyme, also produced from T. vulgaris. Thymol (also known as 2-isopropyl-5-methylphenol, IPMP) is a natural monoterpenoid phenol derivative of cymene, C10H14O, isomeric with carvacrol, found in oil of thyme, and extracted from Thymus vulgaris (common thyme), Ajwain and various other kinds of plants as a white crystalline substance of a pleasant aromatic odor and strong antiseptic properties. Thymol also provides the distinctive, strong flavor of the culinary herb thyme, also produced from T. vulgaris. Thymol is only slightly soluble in water at neutral pH, but it is extremely soluble in alcohols and other organic solvents. It is also soluble in strongly alkaline aqueous solutions due to deprotonation of the phenol. Thymol has a refractive index of 1.5208 and an experimental dissociation exponent (pKa) of 10.59±0.10. Thymol absorbs maximum UV radiation at 274 nm. Regions lacking natural sources of thymol obtain the compound via total synthesis. Thymol is produced from m-cresol and propene in the gas phase: The bee balms Monarda fistulosa and Monarda didyma, North American wildflowers, are natural sources of thymol. The Blackfoot Native Americans recognized these plants' strong antiseptic action, and used poultices of the plants for skin infections and minor wounds. A tisane made from them was also used to treat mouth and throat infections caused by dental caries and gingivitis. Thymol was first isolated by the German chemist Caspar Neumann in 1719. In 1853, the French chemist A. Lallemand named thymol and determined its empirical formula. Thymol was first synthesized by the Swedish chemist Oskar Widman in 1882. An in vitro study found thymol and carvacrol to be highly effective in reducing the minimum inhibitory concentration of several antibiotics against zoonotic pathogens and food spoilage bacteria such as Salmonella typhimurium SGI 1 and Streptococcus pyogenes ermB. In vitro studies have found thymol to be useful as an antifungal against food spoilage and bovine mastitis. Thymol demonstrates in vitro post-antibacterial effect against the test strains E. coli and P. aeruginosa (gram negative), and Staphylococcus aureus and B. cereus (gram positive). This antibacterial activity is caused by inhibiting growth and lactate production, and by decreasing cellular glucose uptake. Thyme essential oil is useful in preservation of food. The antibacterial properties of thymol, a major part of thyme essential oil, as well as other constituents, are in part associated with their lipophilic character, leading to accumulation in bacterial membranes and subsequent membrane-associated events, such as energy depletion. The antifungal nature of thymol against some fungi that are pathogenic to plants is due to its ability to alter the hyphal morphology and cause hyphal aggregates, resulting in reduced hyphal diameters and lyses of the hyphal wall.

[ "Diabetes mellitus", "Essential oil", "Ajowan oil", "Origanum syriacum", "Thymus vulgaris L.", "Origanum compactum", "Satureja cuneifolia" ]
Parent Topic
Child Topic
    No Parent Topic