language-icon Old Web
English
Sign In

Jurin's law

One of the most common fluid mechanical effects that is often explored in micro fluids is capillarity i.e the induced motion of liquids in small channels of which the most simplest case is capillary rise or Jurin's law, named after James Jurin who discovered between 1718 and 1719. His quantitative law suggests that the maximum height of a capillary tube is inversely proportional to the diameter. The difference in height between the surroundings of the tube and the inside and the shape of the meniscus, are caused by capillary action. The mathematical expression of this law can be derived directly from hydrostatic principles and from Young–Laplace equation. Jurin's law allows the measurement of the surface tension of a liquid and can be used to derive the capillary length. One of the most common fluid mechanical effects that is often explored in micro fluids is capillarity i.e the induced motion of liquids in small channels of which the most simplest case is capillary rise or Jurin's law, named after James Jurin who discovered between 1718 and 1719. His quantitative law suggests that the maximum height of a capillary tube is inversely proportional to the diameter. The difference in height between the surroundings of the tube and the inside and the shape of the meniscus, are caused by capillary action. The mathematical expression of this law can be derived directly from hydrostatic principles and from Young–Laplace equation. Jurin's law allows the measurement of the surface tension of a liquid and can be used to derive the capillary length. This law is expressed as:

[ "Capillary action" ]
Parent Topic
Child Topic
    No Parent Topic