language-icon Old Web
English
Sign In

Sinuatrial node

The sinoatrial node (also known as the SA node or the sinus node) is a group of cells located in the wall of the right atrium of the heart. These cells have the ability to spontaneously produce an electrical impulse (action potential; see below for more details), that travels through the heart via the electrical conduction system (see figure 1) causing it to contract. In a healthy heart, the SA node continuously produces action potential, setting the rhythm of the heart and so is known as the heart's natural pacemaker. The rate of action potential production (and therefore the heart rate) is influenced by nerves that supply it.Heart; conduction system (SA node labeled 1)Schematic representation of the atrioventricular bundle The sinoatrial node (also known as the SA node or the sinus node) is a group of cells located in the wall of the right atrium of the heart. These cells have the ability to spontaneously produce an electrical impulse (action potential; see below for more details), that travels through the heart via the electrical conduction system (see figure 1) causing it to contract. In a healthy heart, the SA node continuously produces action potential, setting the rhythm of the heart and so is known as the heart's natural pacemaker. The rate of action potential production (and therefore the heart rate) is influenced by nerves that supply it. The sinoatrial node is a banana-shaped structure that varies in size, usually between 10-30 millimeters (mm) long, 5–7 mm wide, and 1–2 mm deep. The SA node is located in the wall (myocardium) of the right atrium, laterally to the entrance of the superior vena cava in a region called the sinus venarum (hence sino- + atrial). It is positioned roughly between a groove called the crista terminalis located on the internal surface of the heart and the corresponding sulcus terminalis, on the external surface. These grooves run between the entrance of the superior vena cava and the inferior vena cava. The cells of the SA node are spread out within a mesh of connective tissue, containing nerves, blood vessels, collagen and fat. Immediately surrounding the SA node cells are paranodal cells. These cells have structures intermediate between that of the SA node cells and the rest of the atrium. The connective tissue, along with the paranodal cells, insulate the SA node from the rest of the atrium, preventing the electrical activity of the atrial cells from affecting the SA node cells. The SA node cells are smaller and paler than the surrounding atrial cells, with the average cell being around 8 micrometers in diameter and 20-30 micrometers in length (1 micrometer= 0.000001 meter). Unlike the atrial cells, SA node cells contain fewer mitochondria (the power plant of the cell), fewer myofibers (the contractile machinery of the cell), and a smaller sarcoplasmic reticulum (a calcium storage organelle that releases calcium for contraction). This means that the SA node cells are less equipped to contract compared to the atrial and ventricular cells. Action potentials pass from one cardiac cell to the next through pores known as gap junctions. These gap junctions are made of proteins called connexins. There are fewer gap junctions within the SA node and they are smaller in size. This is again important in insulating the SA node from the surrounding atrial cells. The sinoatrial node receives its blood supply from the sinoatrial nodal artery. This blood supply, however, can differ hugely between individuals. For example, in most humans, this is a single artery, although in some cases there have been either 2 or 3 sinoatrial node arteries supplying the SA node. Also, the SA node artery mainly originates as a branch of the right coronary artery; however in some individuals it has arisen from the circumflex artery, which is a branch of the left coronary artery. Finally, the SA node artery commonly passes behind the superior vena cava, before reaching the SA node; however in some instances it passes in front. Despite these many differences, there doesn’t appear to be any advantage to how many sinoatrial nodal arteries an individual has, or where they originate There are no large veins that drain blood away from the SA node. Instead, smaller venules drain the blood directly into the right atrium. The main role of a sinoatrial node cell is to initiate action potentials of the heart, so that it can pass throughout the heart and cause contraction. An action potential is a change in voltage (membrane potential) across the membrane of the cell, produced by the movement of charged atoms (ions). Non-pacemaker cells (including the ventricular and atrial cells) have a period, immediately after an action potential, where the membrane potential remains relatively constant; this is known as a resting membrane potential. This resting phase (see cardiac action potential, phase 4) ends when another action potential reaches the cell. This produces a positive change in membrane potential (known as depolarisation), which initiates the start of the next action potential. Pacemaker cells, however, don’t have this resting phase. Instead, immediately after one action potential, the membrane potential of these cells begins to depolarise again automatically, this is known as the pacemaker potential. Once the pacemaker potential reaches a set value, known as the threshold value, it then produces an action potential. Other cells within the heart (including the purkinje fibers and atrioventricular node; AVN) can also initiate action potentials; however, they do so at a slower rate and therefore, if the SA node is working, it usually beats the AVN to it. Outlined below are the 3 phases of a sinoatrial node action potential. In the ventricular action potential, there are 5 phases (labelled 0-4), however pacemaker action potentials don’t have an obvious phase 1 or 2.

[ "Electrical conduction system of the heart", "Atrioventricular node", "Artery" ]
Parent Topic
Child Topic
    No Parent Topic