language-icon Old Web
English
Sign In

Waterspout

A waterspout is an intense columnar vortex (usually appearing as a funnel-shaped cloud) that occurs over a body of water. Some are connected to a cumulus congestus cloud, some to a cumuliform cloud and some to a cumulonimbus cloud. In the common form, it is a non-supercell tornado over water. While it is often weaker than most of its land counterparts, stronger versions spawned by mesocyclones do occur. Most waterspouts do not suck up water; they are small and weak rotating columns of air over water. While waterspouts form mostly in the tropics and subtropical areas, other areas also report waterspouts, including Europe, Australia, New Zealand, the Great Lakes, Antarctica and on rare occasions, the Great Salt Lake. Some are also found on the East Coast of the United States, and the coast of California. Although rare, waterspouts have been observed in connection with lake-effect snow precipitation bands. Waterspouts have a five-part life cycle: formation of a dark spot on the water surface, spiral pattern on the water surface, formation of a spray ring, development of the visible condensation funnel, and ultimately decay. Waterspouts exist on a microscale, where their environment is less than two kilometers in width. The cloud from which they develop can be as innocuous as a moderate cumulus, or as great as a supercell. While some waterspouts are strong and tornadic in nature, most are much weaker and caused by different atmospheric dynamics. They normally develop in moisture-laden environments as their parent clouds are in the process of development, and it is theorized they spin as they move up the surface boundary from the horizontal shear near the surface, and then stretch upwards to the cloud once the low level shear vortex aligns with a developing cumulus cloud or thunderstorm. Some weak tornadoes, known as landspouts, have been shown to develop in a similar manner. More than one waterspout can occur in the same vicinity at the same time. As many as nine simultaneous waterspouts have been reported on Lake Michigan. Waterspouts that are not associated with a rotating updraft of a supercell thunderstorm are known as 'non-tornadic' or 'fair-weather waterspouts', and are by far the most common type. Fair-weather waterspouts occur in coastal waters and are associated with dark, flat-bottomed, developing convective cumulus towers. Waterspouts of this type rapidly develop and dissipate, having life cycles shorter than 20 minutes. They usually rate no higher than EF0 on the Enhanced Fujita scale, generally exhibiting winds of less than 30 m/s (67 mph; 108 km/h). They are most frequently seen in tropical and sub-tropical climates, with upwards of 400 per year observed in the Florida Keys. They typically move slowly, if at all, since the cloud to which they are attached is horizontally static, being formed by vertical convective action instead of the subduction/adduction interaction between colliding fronts. Fair-weather waterspouts are very similar in both appearance and mechanics to landspouts, and largely behave as such if they move ashore.

[ "Tornado", "Utility model" ]
Parent Topic
Child Topic
    No Parent Topic