language-icon Old Web
English
Sign In

Step-growth polymerization

Step-growth polymerization refers to a type of polymerization mechanism in which bi-functional or multifunctional monomers react to form first dimers, then trimers, longer oligomers and eventually long chain polymers. Many naturally occurring and some synthetic polymers are produced by step-growth polymerization, e.g. polyesters, polyamides, polyurethanes, etc. Due to the nature of the polymerization mechanism, a high extent of reaction is required to achieve high molecular weight. The easiest way to visualize the mechanism of a step-growth polymerization is a group of people reaching out to hold their hands to form a human chain—each person has two hands (= reactive sites). There also is the possibility to have more than two reactive sites on a monomer: In this case branched polymers production take place. Step-growth polymerization refers to a type of polymerization mechanism in which bi-functional or multifunctional monomers react to form first dimers, then trimers, longer oligomers and eventually long chain polymers. Many naturally occurring and some synthetic polymers are produced by step-growth polymerization, e.g. polyesters, polyamides, polyurethanes, etc. Due to the nature of the polymerization mechanism, a high extent of reaction is required to achieve high molecular weight. The easiest way to visualize the mechanism of a step-growth polymerization is a group of people reaching out to hold their hands to form a human chain—each person has two hands (= reactive sites). There also is the possibility to have more than two reactive sites on a monomer: In this case branched polymers production take place. IUPAC deprecates the term step-growth polymerization and recommends use of the terms polyaddition, when the propagation steps are addition reactions and no molecules are evolved during these steps, and polycondensation when the propagation steps are condensation reactions and molecules are evolved during these steps. Most natural polymers being employed at early stage of human society are of condensation type. The synthesis of first truly synthetic polymeric material, Bakelite, was announced by Leo Baekeland in 1907, through a typical step-growth polymerization fashion of phenol and formaldehyde. The pioneer of synthetic polymer science, Wallace Carothers, developed a new means of making polyesters through step-growth polymerization in 1930s as a research group leader at DuPont. It was the first reaction designed and carried out with the specific purpose of creating high molecular weight polymer molecules, as well as the first polymerization reaction whose results had been predicted beforehand by scientific theory. Carothers developed a series of mathematic equations to describe the behavior of step-growth polymerization systems which are still known as the Carothers equations today. Collaborating with Paul Flory, a physical chemist, they developed theories that describe more mathematical aspects of step-growth polymerization including kinetics, stoichiometry, and molecular weight distribution etc. Carothers is also well known for his invention of Nylon. 'Step growth polymerization' and condensation polymerization are two different concepts, not always identical. In fact polyurethane polymerizes with addition polymerization (because its polymerization produces no small molecules), but its reaction mechanism corresponds to a step-growth polymerization. The distinction between 'addition polymerization' and 'condensation polymerization' was introduced by Wallace Hume Carothers in 1929, and refers to the type of products, respectively: The distinction between 'step-growth polymerization' and 'chain-growth polymerization' was introduced by Paul Flory in 1953, and refers to the reaction mechanisms, respectively: This technique is usually compared with chain-growth polymerization to show its characteristics. Classes of step-growth polymers are: A monomer with functionality of 3 or more will introduce branching in a polymer and will ultimately form a cross-linked macrostructure or network even at low fractional conversion. The point at which a tree-like topology transits to a network is known as the gel point because it is signalled by an abrupt change in viscosity. One of the earliest so-called thermosets is known as bakelite. It is not always water that is released in step-growth polymerization: in acyclic diene metathesis or ADMET dienes polymerize with loss of ethylene.

[ "Copolymer", "Polymerization", "Monomer" ]
Parent Topic
Child Topic
    No Parent Topic