language-icon Old Web
English
Sign In

Intensive crop farming

Intensive crop farming is a modern form of intensive farming that refers to the industrialized production of crops. Intensive crop farming's methods include innovation in agricultural machinery, farming methods, genetic engineering technology, techniques for achieving economies of scale in production, the creation of new markets for consumption, patent protection of genetic information, and global trade. These methods are widespread in developed nations. The practice of industrial agriculture is a relatively recent development in the history of agriculture, and the result of scientific discoveries and technological advances. Innovations in agriculture beginning in the late 19th century generally parallel developments in mass production in other industries that characterized the latter part of the Industrial Revolution. The identification of nitrogen and phosphorus as critical factors in plant growth led to the manufacture of synthetic fertilizers, making more intensive uses of farmland for crop production possible. Similarly, the discovery of vitamins and their role in animal nutrition, in the first two decades of the 20th century, led to vitamin supplements, which in the 1920s allowed certain livestock to be raised indoors, reducing their exposure to adverse natural elements. The discovery of antibiotics and vaccines facilitated raising livestock in larger numbers by reducing disease. Chemicals developed for use in World War II gave rise to synthetic pesticides. Developments in shipping networks and technology have made long-distance distribution of produce feasible. Certain crops have proven more amenable to intensive farming than others. Critics of intensively farmed crops cite a wide range of concerns. On the food quality front, it is held by critics that quality is reduced when crops are bred and grown primarily for cosmetic and shipping characteristics. Environmentally, industrial farming of crops is claimed to be responsible for loss of biodiversity, degradation of soil quality, soil erosion, food toxicity (pesticide residues) and pollution (through agrichemical build-ups and runoff, and use of fossil fuels for agrichemical manufacture and for farm machinery and long-distance distribution). The projects within the Green Revolution spread technologies that had already existed, but had not been widely used outside of industrialized nations. These technologies included pesticides, irrigation projects, and synthetic nitrogen fertilizer. The novel technological development of the Green Revolution was the production of what some referred to as “miracle seeds.” Scientists created strains of maize, wheat, and rice that are generally referred to as HYVs or “high-yielding varieties.” HYVs have an increased nitrogen-absorbing potential compared to other varieties. Since cereals that absorbed extra nitrogen would typically lodge, or fall over before harvest, semi-dwarfing genes were bred into their genomes. Norin 10 wheat, a variety developed by Orville Vogel from Japanese dwarf wheat varieties, was instrumental in developing Green Revolution wheat cultivars. IR8, the first widely implemented HYV rice to be developed by IRRI, was created through a cross between an Indonesian variety named “Peta” and a Chinese variety named “Dee Geo Woo Gen.” With the availability of molecular genetics in Arabidopsis and rice the mutant genes responsible (reduced height(rht), gibberellin insensitive (gai1) and slender rice (slr1)) have been cloned and identified as cellular signalling components of gibberellic acid, a phytohormone involved in regulating stem growth via its effect on cell division. Stem growth in the mutant background is significantly reduced leading to the dwarf phenotype. Photosynthetic investment in the stem is reduced dramatically as the shorter plants are inherently more stable mechanically. Assimilates become redirected to grain production, amplifying in particular the effect of chemical fertilisers on commercial yield. HYVs significantly outperform traditional varieties in the presence of adequate irrigation, pesticides, and fertilizers. In the absence of these inputs, traditional varieties may outperform HYVs. One criticism of HYVs is that they were developed as F1 hybrids, meaning they need to be purchased by a farmer every season rather than saved from previous seasons, thus increasing a farmer’s cost of production.

[ "Ecological farming", "Extensive farming" ]
Parent Topic
Child Topic
    No Parent Topic