language-icon Old Web
English
Sign In

Dentin dysplasia

Dentin dysplasia (DD) is a rare genetic developmental disorder dentine production of the teeth, commonly exhibiting an autosomal dominant inheritance that causes malformation of the root. It affects both primary and permanent dentitions in approximately 1 in every 100,000 patients. It is characterized by presence of normal enamel but atypical dentin with abnormal pulpal morphology. Witkop in 1972 classified DD into two types which are Type I (DD-1) is the radicular type, and type II (DD-2) is the coronal type. DD-1 has been further divided into 4 different subtypes (DD-1a,1b,1c,1d) based on the radiographic features. Dentin dysplasia (DD) is a rare genetic developmental disorder dentine production of the teeth, commonly exhibiting an autosomal dominant inheritance that causes malformation of the root. It affects both primary and permanent dentitions in approximately 1 in every 100,000 patients. It is characterized by presence of normal enamel but atypical dentin with abnormal pulpal morphology. Witkop in 1972 classified DD into two types which are Type I (DD-1) is the radicular type, and type II (DD-2) is the coronal type. DD-1 has been further divided into 4 different subtypes (DD-1a,1b,1c,1d) based on the radiographic features. Clinically the teeth look normal in colour and morphologic appearance; however, they are commonly very mobile and exfoliated prematurely. Both primary and permanent dentitions can be affected by either type I or type II dentin dysplasia. However, deciduous teeth affected by type II dentin dysplasia have a characteristic blue-amber discolouration, whilst the other dentition appears normal. The mutation in collagen type 1 (COL1 A1, COL1 A2) causes DI-1. It is similar to the systemic condition dental features known as osteogenesis imperfect. DI-2, DI-3 and DD-2 share the same genetic mutation of dentin sialophosphoprotein, that is located on chromosome 4. They are autosomal-dominant diseases with complete penetrance and variable expressivity. Due to the same genetic mutation, these diseases would often result in overlapping clinical and radiographic features. Therefore, prevailing theories suggests that DI-2, DI-3 and DD-2 are categorized as a single disease entity with variable severity of expression. However, the causes of DD-1 have yet to be theorized. Diagnosis is mostly based on general examination and radiographs, and it should be taken when abnormality of the teeth is suspected as most of the affected teeth have normal clinical appearance. Differential diagnosis is very important to have a definitive diagnosis as some radiographic or histologic features of dentine dysplasia may bear a resemblance to different disorders: Type I has been known as radicular dentine dysplasia because the teeth have undeveloped root(s) with abnormal pulp tissue. Morphology and colour of the crown mostly appear normal, but occasionally teeth appear slightly amber coloured or bluish-brown shine in primary teeth with no or only immature root development. The teeth are mostly maligned and have higher risk of fracture. In other words, affected primary teeth usually have abnormal shaped or shorter than normal roots. “Crescent/half-moon shaped” pulp chamber remnant in permanent teeth can be seen on x-rays. The roots may appear to be darker or radiolucent/pointy and short with apical constriction. Dentine is laid down abnormally and causes excessive growth within the pulp chamber. This will reduce the pulp space and eventually cause incomplete and total pulp chamber obliteration in permanent teeth. Sometimes periapical pathology or cysts can be seen around the root apex. Most cases of DD associated with peri-apical radiolucency/ pathology have been diagnosed as radicular cysts, but some of them have been as diagnosed peri-apical grauloma instead. Type II would mostly cause discolouration to the primary teeth. Affected teeth usually appear as brownish-blue, brown or yellow. Translucent “opalescence” is often one of the characteristics to describe teeth with DD-2. In some cases teeth might show slightly amber coloured but in most of the cases permanent teeth are unaffected and appear normal regardless of colour, shape and size. Dental X-rays is the key to diagnose dentine dysplasia, especially on permanent teeth. Abnormalities of the pulp chamber is the main characteristic to make a definitive diagnosis.

[ "Dentinogenesis imperfecta", "Abnormal dentin", "RADICULAR DENTIN DYSPLASIA", "Rootless teeth", "CORONAL DENTIN DYSPLASIA", "Dentinal dysplasia" ]
Parent Topic
Child Topic
    No Parent Topic