language-icon Old Web
English
Sign In

X-ray optics

X-ray optics is the branch of optics that manipulates X-rays instead of visible light. It deals with focusing and other ways of manipulating the X-ray beams for research techniques such as X-ray crystallography, X-ray fluorescence, small-angle X-ray scattering, X-ray microscopy, X-ray phase-contrast imaging, X-ray astronomy etc. X-ray optics is the branch of optics that manipulates X-rays instead of visible light. It deals with focusing and other ways of manipulating the X-ray beams for research techniques such as X-ray crystallography, X-ray fluorescence, small-angle X-ray scattering, X-ray microscopy, X-ray phase-contrast imaging, X-ray astronomy etc. Since X-rays and visible light are both electromagnetic waves they propagate in space in the same way, but because of the much higher frequency and photon energy of X-rays they interact with matter very differently. Visible light is easily redirected using lenses and mirrors, but because the real part of the complex refractive index of all materials is very close to 1 for X-rays, they instead tend to initially penetrate and eventually get absorbed in most materials without changing direction much. There are many different techniques used to redirect X-rays, most of them changing the directions by only minute angles. The most common principle used is reflection at grazing incidence angles, either using total external reflection at very small angles or multilayer coatings. Other principles used include diffraction and interference in the form of zone plates, refraction in compound refractive lenses that use many small X-ray lenses in series to compensate by their number for the minute index of refraction, Bragg reflection off of a crystal plane in flat or bent crystals. X-ray beams are often collimated or reduced in size using pinholes or movable slits typically made out of tungsten or some other high-Z material. Narrow parts of an X-ray spectrum can be selected with monochromators based on one or multiple Bragg reflections off of crystals. X-ray spectra can also be manipulated by having the X-rays pass through a filter (optics). This will typically reduce the low energy part of the spectrum, and possibly parts above absorption edges of the elements used for the filter. Analytical X-ray techniques such as X-ray crystallography, small-angle X-ray scattering, wide-angle X-ray scattering, X-ray fluorescence, X-ray spectroscopy and X-ray photoelectron spectroscopy all benefit from high X-ray flux densities on the samples being investigated. This is achieved by focusing the divergent beam from the X-ray source onto the sample using one out of a range of focusing optical components. This is also useful for scanning probe techniques such as scanning transmission X-ray microscopy and scanning X-ray fluorescence imaging. Polycapillary lenses are arrays of small hollow glass tubes that guide the X-rays with many total external reflections on the inside of the tubes.The array is tapered so that one end of the capillaries points at the X-ray source and the other at the sample. Polycapillary optics are achromatic and thus suitable for scanning fluorescence imaging and other applications where a broad X-ray spectrum is useful. They collect X-rays efficiently for photon energies of 0.1 to 30 keV and can achieve gains of 100 to 10000 in flux over using a pinhole at 100 mm from the X-ray source.Since only X-rays entering the capillaries within a very narrow angle will be totally internally reflected, only X-rays coming from a small spot will be transmitted through the optic. Polycapillary optics cannot image more than one point to another, so they are used for illumination and collection of X-rays. Zone plates consist of a substrate with concentric zones of a phase-shifting or absorbing material with zones getting narrower the larger their radius. The zone widths are designed so that a transmitted wave gets constructive interference in a single point giving a focus. Zone plates can be used as condensers to collect light, but also for direct full field imaging in e.g. an X-ray microscope. Zone plates are highly chromatic and usually designed only for a narrow energy span, making it necessary to have monochromatic X-rays for efficient collection and high-resolution imaging. Since refractive indices at x-ray wavelengths are so close to 1, the focal lengths of normal lenses get impractically long. To overcome this lenses with very small radii of curvature are used, and they are stacked in long rows so that the combined focusing power gets appreciable. Since the refractive index is less than 1 for x-rays these lenses must be concave to achieve focusing, contrary to visible light lenses, which are convex for a focusing effect. Radii of curvature are typically less than a millimeter making the usable x-ray beam width at most about 1 mm. To reduce the absorption of x-rays in these stacks, materials with very low atomic number such as beryllium or lithium are typically used. Since the refractive index depends strongly on X-ray wavelength, these lenses are highly chromatic and the variation of the focal length with wavelength must be taken into account for any application. The basic idea is to reflect a beam of X-rays from a surface and to measure the intensity of X-rays reflected in the specular direction (reflected angle equal to incident angle). It has been shown that a reflection off a parabolic mirror followed by a reflection off a hyperbolic mirror can lead to the focusing of X-rays. Since the incoming X-rays must strike the tilted surface of the mirror, the collecting area is small. It can, however, be increased by nesting arrangements of mirrors inside each other.

[ "Beam (structure)", "X-ray", "Microstructured optical arrays", "X-ray nanoprobe", "International X-ray Observatory", "polycapillary optics" ]
Parent Topic
Child Topic
    No Parent Topic