language-icon Old Web
English
Sign In

Gallium phosphide

Gallium phosphide (GaP), a phosphide of gallium, is a compound semiconductor material with an indirect band gap of 2.24 eV at room temperature. The polycrystalline material has the appearance of pale orange or grayish pieces. Undoped single crystals are orange, but strongly doped wafers appear darker due to free-carrier absorption. It is odorless and insoluble in water. Gallium phosphide (GaP), a phosphide of gallium, is a compound semiconductor material with an indirect band gap of 2.24 eV at room temperature. The polycrystalline material has the appearance of pale orange or grayish pieces. Undoped single crystals are orange, but strongly doped wafers appear darker due to free-carrier absorption. It is odorless and insoluble in water. Sulfur or tellurium are used as dopants to produce n-type semiconductors. Zinc is used as a dopant for the p-type semiconductor. Gallium phosphide has applications in optical systems. Its refractive index is between 4.30 at 262 nm (UV), 3.45 at 550 nm (green) and 3.19 at 840 nm (IR), which is higher than in most known materials, including diamond (2.4). Gallium phosphide has been used in the manufacture of low-cost red, orange, and green light-emitting diodes (LEDs) with low to medium brightness since the 1960s. It has a relatively short life at higher current and its lifetime is sensitive to temperature. It is used standalone or together with gallium arsenide phosphide. Pure GaP LEDs emit green light at a wavelength of 555 nm. Nitrogen-doped GaP emits yellow-green (565 nm) light, zinc oxide doped GaP emits red (700 nm). Gallium phosphide is transparent for yellow and red light, therefore GaAsP-on-GaP LEDs are more efficient than GaAsP-on-GaAs. At temperatures above ~900 °C, gallium phosphide dissociates and the phosphorus escapes as a gas. In crystal growth from a 1500 °C melt (for LED wafers), this must be prevented by holding the phosphorus in with a blanket of molten boric oxide in inert gas pressure of 10-100 atmospheres. The process is called liquid encapsulated Czochralski (LEC) growth, an elaboration of the Czochralski process used for silicon wafers.

[ "Condensed matter physics", "Optoelectronics", "Analytical chemistry", "Inorganic chemistry" ]
Parent Topic
Child Topic
    No Parent Topic