Unified neutral theory of biodiversity

The unified neutral theory of biodiversity and biogeography (here 'Unified Theory' or 'UNTB') is a hypothesis and the title of a monograph by ecologist Stephen Hubbell. The hypothesis aims to explain the diversity and relative abundance of species in ecological communities, although like other neutral theories of ecology, Hubbell's hypothesis assumes that the differences between members of an ecological community of trophically similar species are 'neutral', or irrelevant to their success. This implies that biodiversity arises at random, as each species follows a random walk. The hypothesis has sparked controversy, and some authors consider it a more complex version of other null models that fit the data better. Neutrality means that at a given trophic level in a food web, species are equivalent in birth rates, death rates, dispersal rates and speciation rates, when measured on a per-capita basis. This can be considered a null hypothesis to niche theory. Hubbell built on earlier neutral concepts, including MacArthur & Wilson's theory of island biogeography and Gould's concepts of symmetry and null models. An ecological community is a group of trophically similar, sympatric species that actually or potentially compete in a local area for the same or similar resources. Under the Unified Theory, complex ecological interactions are permitted among individuals of an ecological community (such as competition and cooperation), provided that all individuals obey the same rules. Asymmetric phenomena such as parasitism and predation are ruled out by the terms of reference; but cooperative strategies such as swarming, and negative interaction such as competing for limited food or light are allowed (so long as all individuals behave in the same way). The Unified Theory also makes predictions that have profound implications for the management of biodiversity, especially the management of rare species. The theory predicts the existence of a fundamental biodiversity constant, conventionally written θ, that appears to govern species richness on a wide variety of spatial and temporal scales. Although not strictly necessary for a neutral theory, many stochastic models of biodiversity assume a fixed, finite community size. There are unavoidable physical constraints on the total number of individuals that can be packed into a given space (although space per se isn't necessarily a resource, it is often a useful surrogate variable for a limiting resource that is distributed over the landscape; examples would include sunlight or hosts, in the case of parasites). If a wide range of species are considered (say, giant sequoia trees and duckweed, two species that have very different saturation densities), then the assumption of constant community size might not be very good, because density would be higher if the smaller species were monodominant.

[ "Neutral theory of molecular evolution", "Relative abundance distribution", "Biological dispersal", "Extinction", "Relative species abundance" ]
Parent Topic
Child Topic
    No Parent Topic