language-icon Old Web
English
Sign In

Causal reasoning

Causal reasoning is the process of identifying causality: the relationship between a cause and its effect. The study of causality extends from ancient philosophy to contemporary neuropsychology; assumptions about the nature of causality may be shown to be functions of a previous event preceding a later one. The first known protoscientific study of cause and effect occurred in Aristotle's Physics. Causal inference is an example of causal reasoning. Causal reasoning is the process of identifying causality: the relationship between a cause and its effect. The study of causality extends from ancient philosophy to contemporary neuropsychology; assumptions about the nature of causality may be shown to be functions of a previous event preceding a later one. The first known protoscientific study of cause and effect occurred in Aristotle's Physics. Causal inference is an example of causal reasoning. Causal relationships may be understood as a transfer of force. If A causes B, then A must transmit a force (or causal power) to B which results in the effect. Causal relationships suggest change over time; cause and effect are temporally related, and the cause precedes the outcome. Causality may also be inferred in the absence of a force, a less-typical definition. A cause can be removal (or stopping), like removing a support from a structure and causing a collapse or a lack of precipitation causing wilted plants. Humans can reason about many topics (for example, in social and counterfactual situations and mathematics) with the aid of causal understanding. Understanding depends on the ability to comprehend cause and effect. People must be able to reason about the causes of others’ behavior (to understand their intentions and act appropriately) and understand the likely effects of their own actions. Counterfactual arguments are presented in many situations; humans are predisposed to think about “what might have been”, even when that argument has no bearing on the current situation. Although causality is related to mechanism, an understanding of causality does not necessarily imply an understanding of mechanism. Cause-and-effect relationships define categories of objects. Wings are a feature of the category 'birds'; this feature is causally interconnected with another feature of the category, the ability to fly. Traditionally, research in cognitive psychology has focused on causal relations when the cause and the effect are both binary values; both the cause and the effect are present or absent. It is also possible that both the cause and the effect take continuous values. For example, turning the volume knob of a radio (as the cause) increases or decreases the sound intensity (as the effect). In these cases, the relation between the variables of the cause and the effect resembles a mathematical function in which change in the variable of the cause changes values in the variable of the effect. Human learning of such relations has been studied in the field of 'Function Learning'. Humans are predisposed to understand cause and effect, making inferences bi-directionally. Temporal cues demonstrate causality. When observing an event, people assume that things preceding the event cause it, and things following the event are effects of it. Coincidence of movement and spatial relationships are another way to infer cause and effect. If objects move together (or one object seems to initiate the movement of another), causality is inferred from that relationship. Animacy may also be inferred from such relationships. Causal reasoning may be activated almost automatically. However, inferences about cause and effect do not always demonstrate understanding of mechanisms underlying causality; causality has been described as 'cognitive illusion'. Much understanding of cause and effect is based on associations, without an understanding of how events are related to one another; this is known as the 'illusion of explanatory depth'.

[ "Cognition", "Causality" ]
Parent Topic
Child Topic
    No Parent Topic