language-icon Old Web
English
Sign In

Spinal cord injury rehabilitation

When treating a person with a spinal cord injury, repairing the damage created by injury is the ultimate goal. By using a variety of treatments, greater improvements are achieved, and, therefore, treatment should not be limited to one method. Furthermore, increasing activity will increase his/her chances of recovery. When treating a person with a spinal cord injury, repairing the damage created by injury is the ultimate goal. By using a variety of treatments, greater improvements are achieved, and, therefore, treatment should not be limited to one method. Furthermore, increasing activity will increase his/her chances of recovery. The rehabilitation process following a spinal cord injury typically begins in the acute care setting. Occupational therapy plays an important role in the management of SCI. Recent studies emphasize the importance of early occupational therapy, started immediately after the client is stable. This process includes teaching of coping skills, and physical therapy. Physical therapists, occupational therapists, social workers, psychologists and other health care professionals typically work as a team under the coordination of a physiatrist to decide on goals with the patient and develop a plan of discharge that is appropriate for the patient’s condition. In the first step, the focus is on support and prevention. Interventions aim to give the individual a sense of control over a situation in which the patient likely feels little independence. As the patient becomes more stable, they may move to a rehabilitation facility or remain in the acute care setting. The patient begins to take more of an active role in their rehabilitation at this stage and works with the team to develop reasonable functional goals. In the acute phase physical and occupational therapists focus on the patient’s respiratory status, prevention of indirect complications (such as pressure sores), maintaining range of motion, and keeping available musculature active. Depending on the Neurological Level of Impairment (NLI), the muscles responsible for expanding the thorax, which facilitate inhalation, may be affected. If the NLI is such that it affects some of the ventilatory muscles, more emphasis will then be placed on the muscles with intact function. For example, the intercostal muscles receive their innervation from T1–T11, and if any are damaged, more emphasis will need to be placed on the unaffected muscles which are innervated from higher levels of the CNS. As SCI patients suffer from reduced total lung capacity and tidal volume it is pertinent that physical therapists teach SCI patients accessory breathing techniques (e.g. apical breathing, glossopharyngeal breathing, etc.) that typically are not taught to healthy individuals. Physical therapists can assist immobilized patients with effective cough techniques, secretion clearance, stretching of the thoracic wall, and suggest abdominal support belts when necessary. The amount of time a patient is immobilized may depend on the level of the spinal cord injury. Physical therapists work with the patient to prevent any complications that may arise due to this immobilization. Other complications that arise from immobilization include muscle atrophy and osteoporosis, especially to the lower limbs, increasing the risk of fractures to the femur and tibia. While passive weight bearing of paralyzed lower extremities appears to be ineffective, stressing the bones through muscular contractions initiated by functional electrical stimulation (FES) has yielded positive results in some cases. The intensity, frequency, and duration of stress to the bones appear to be important determinants of improved bone parameters. Generally, the frequency is effective with three or more weekly exercise sessions. Studies of duration suggest that several months to one or more years of FES are necessary. Improvement of locomotor function is one of the primary goals for people with a spinal cord injury. SCI treatments may focus on specific goals such as to restore walking or locomotion to an optimal level for the individual. The most effective way to restore locomotion is by complete repair, but techniques are not yet developed for regeneration. Treadmill training, over groundtraining, and functional electrical stimulation can all be used to improve walking or locomotor activity. These activities work if neurons of the central pattern generator (CPG) circuits, which generate rhythmic movements of the body, are still functioning. With inactivity, the neurons of CPG degenerate. Therefore, the above activities are important for keeping neurons active until regeneration activities are developed. A 2012 systematic review found insufficient evidence to conclude which locomotor training strategy improves walking function most for people with spinal cord injury. This suggests that it is not the type of training used, but the goals and the routines that have the biggest impact. Applying spinal cord stimulation (transcutaneous or epidurally) during weight supported walking have been shown to improve locomotor output. In the English NHS a serious shortage of specialist beds was identified by a review in December 2016. There were 393 and 54 additional beds were required. Patients waited an average of 52 days for a bed on a specialist ward in 2015-16. This meant patients were “inappropriately” occupying beds at major trauma centres. It was suggested that NHS England’s specialised commissioning division would be unable to fund the recommendations. According to the Spinal Injuries Association, of 2,494 referrals in 2017-18 to specialist spinal cord injury centres, only 800 were admitted and many more patients were not referred at all. Though rehabilitation interventions are performed during the acute phase, recent literature suggests that 44% of the total hours spent on rehabilitation during the first year after spinal cord injury, occur after discharge from inpatient rehabilitation. Participants in this study received 56% of their total physical therapy hours and 52% of their total occupational therapy hours after discharge. This suggests that inpatient rehabilitation lengths of stay are reduced and that post-discharge therapy may replace some of the inpatient treatment.

[ "Sports medicine", "Spinal cord injury", "pain medicine", "Cognitive rehabilitation therapy", "Osteoarthritis", "Neuromuscular medicine" ]
Parent Topic
Child Topic
    No Parent Topic