language-icon Old Web
English
Sign In

Building collapse

Structural integrity and failure is an aspect of engineering which deals with the ability of a structure to support a designed structural load (weight, force, etc...) without breaking, and includes the study of past structural failures in order to prevent failures in future designs. Structural integrity is the ability of an item—either a structural component or a structure consisting of many components—to hold together under a load, including its own weight, without breaking or deforming excessively. It assures that the construction will perform its designed function during reasonable use, for as long as its intended life span. Items are constructed with structural integrity to prevent catastrophic failure, which can result in injuries, severe damage, death, and/or monetary losses. Structural failure refers to the loss of structural integrity, or the loss of load -carrying capacity in either a structural component, or the structure itself. Structural failure is initiated when a material is stressed beyond its strength limit, causing fracture or excessive deformations; one limit state that must be accounted for in structural design is ultimate failure strength. In a well- designed system, a localized failure should not cause immediate or even progressive collapse of the entire structure. Structural integrity is the ability of a structure to withstand its intended loading without failing due to fracture, deformation, or fatigue. It is a concept often used in engineering to produce items that will serve their designed purposes and remain functional for a desired service life . To construct an item with structural integrity, an engineer must first consider a material’s mechanical properties, such as toughness, strength, weight, hardness, and elasticity, and then determine the size and shape necessary for the material to withstand the desired load for a long life. Since members can neither break nor bend excessively, they must be both stiff and tough. A very stiff material may resist bending, but unless it is sufficiently tough, it may have to be very large to support a load without breaking. On the other hand, a highly elastic material will bend under a load even if its high toughness prevents fracture. Furthermore, each component’s integrity must correspond to its individual application in any load-bearing structure. Bridge supports need a high yield strength, whereas the bolts that hold them need good shear and tensile strength. Springs need good elasticity, but lathe tooling needs high rigidity. In addition, the entire structure must be able to support its load without its weakest links failing, as this can put more stress on other structural elements and lead to cascading failures. The need to build structures with integrity goes back as far as recorded history. Houses needed to be able to support their own weight, plus the weight of the inhabitants. Castles needed to be fortified to withstand assaults from invaders. Tools needed to be strong and tough enough to do their jobs. However, the science of fracture mechanics as it exists today was not developed until the 1920s, when Alan Arnold Griffith studied the brittle fracture of glass. Starting in the 1940s, the infamous failures of several new technologies made a more scientific method for analyzing structural failures necessary. During World War II, over 200 welded-steel ships broke in half due to brittle fracture, caused by stresses created from the welding process, temperature changes, and by the stress concentrations at the square corners of the bulkheads. In the 1950s, several De Havilland Comets exploded in mid-flight due to stress concentrations at the corners of their squared windows, which caused cracks to form and the pressurized cabins to explode. Boiler explosions, caused by failures in pressurized boiler tanks, were another common problem during this era, and caused severe damage. The growing sizes of bridges and buildings led to even greater catastrophes and loss of life. This need to build constructions with structural integrity led to great advances in the fields of material sciences and fracture mechanics.

[ "Structural engineering", "Forensic engineering", "Civil engineering" ]
Parent Topic
Child Topic
    No Parent Topic