language-icon Old Web
English
Sign In

Jicamarca Radio Observatory

The Jicamarca Radio Observatory (JRO) is the equatorial anchor of the Western Hemisphere chain of Incoherent Scatter Radar (ISR) observatories extending from Lima, Peru to Søndre Strømfjord, Greenland. JRO is the premier scientific facility in the world for studying the equatorial ionosphere. The Observatory is about half an hour drive inland (east) from Lima and 10 km from the Central Highway (11°57′05″S 76°52′27.5″W / 11.95139°S 76.874306°W / -11.95139; -76.874306, 520 meters ASL). The magnetic dip angle is about 1°, and varies slightly with altitude and year. The radar can accurately determine the direction of the Earth's magnetic field (B) and can be pointed perpendicular to B at altitudes throughout the ionosphere. The study of the equatorial ionosphere is rapidly becoming a mature field due, in large part, to the contributions made by JRO in radio science. The Jicamarca Radio Observatory (JRO) is the equatorial anchor of the Western Hemisphere chain of Incoherent Scatter Radar (ISR) observatories extending from Lima, Peru to Søndre Strømfjord, Greenland. JRO is the premier scientific facility in the world for studying the equatorial ionosphere. The Observatory is about half an hour drive inland (east) from Lima and 10 km from the Central Highway (11°57′05″S 76°52′27.5″W / 11.95139°S 76.874306°W / -11.95139; -76.874306, 520 meters ASL). The magnetic dip angle is about 1°, and varies slightly with altitude and year. The radar can accurately determine the direction of the Earth's magnetic field (B) and can be pointed perpendicular to B at altitudes throughout the ionosphere. The study of the equatorial ionosphere is rapidly becoming a mature field due, in large part, to the contributions made by JRO in radio science. JRO’s main antenna is the largest of all the incoherent scatter radars in the world. The main antenna consists of a 300m x 300m square array composed of 18,432 cross-polarized dipoles. The main research areas of the observatories are: the stable equatorial ionosphere, ionospheric field aligned irregularities, the dynamics of the equatorial neutral atmosphere and meteor physics. The Observatory is a facility of the Instituto Geofísico del Perú operated with support from the US National Science Foundation Cooperative Agreements through Cornell University. The Jicamarca Radio Observatory was built in 1960–61 by the Central Radio Propagation Laboratory (CRPL) of the National Bureau of Standards (NBS). This lab later became part of the Environmental Science Service Administration (ESSA) and then the National Oceanic and Atmospheric Administration (NOAA). The project was led by Dr. Kenneth L. Bowles, who is known as the “father of JRO”. Although the last dipole was installed on April 27, 1962, the first incoherent scatter measurements at Jicamarca were made in early August 1961, using part of the total area projected and without the transmitter's final stage. In 1969 ESSA turned the Observatory over to the Instituto Geofísico del Perú (IGP), which had been cooperating with CRPL during the International Geophysical Year (IGY) in 1957–58 and had been intimately involved with all aspects of the construction and operation of Jicamarca. ESSA and then NOAA continued to provide some support to the operations for several years after 1969, in major part due to the efforts of the informal group called “Jicamarca Amigos” led by Prof. William E. Gordon. Prof. Gordon invented the incoherent scatter radar technique in 1958. A few years later the National Science Foundation began partially supporting the operation of Jicamarca, first through NOAA, and since 1979 through Cornell University via Cooperative Agreements. In 1991, a nonprofit Peruvian organization—called Ciencia Internacional (CI)—was created to hire most observatory staff members and to provide services and goods to the IGP to run the Observatory. Since 1969, the great majority of the radar components have been replaced and modernized with “home made” hardware and software, designed and built by Peruvian engineers and technicians. More than 60 Ph.D. students, many from US institutions and 15 from Peru, have done their research in association with Jicamarca. JRO’s main instrument is the VHF radar that operates on 50 MHz (actually on 49.9 MHz ) and is used to study the physics of the equatorial ionosphere and neutral atmosphere. Like any other radar, its main components are: antenna, transmitters, receivers, radar controller, acquisition and processing system. The main distinctive characteristics of JRO’s radar are: (1) the antenna (the largest of all the ISRs in the world) and (2) the powerful transmitters. The main radar operates in mainly two modes: (1) incoherent scatter radar (ISR) mode, and (2) coherent scatter (CSR) mode. In the ISR mode using the high power transmitter, Jicamarca measures the electron density, electron and ion temperature, ion composition and vertical and zonal electric fields in the equatorial ionosphere. Given its location and frequency of operation, Jicamarca has the unique capability of measuring the absolute electron density via Faraday rotation, and the most precise ionospheric electric fields by pointing the beam perpendicular to the Earth's magnetic field. In the CSR mode the radar measures the echoes that are more than 30 dB stronger than the ISR echoes. These echoes come from equatorial irregularities generated in troposphere, stratosphere, mesosphere, equatorial electrojet, E and F region. Given the strength of the echoes, usually low power transmitters and/or smaller antenna sections are used.

[ "Incoherent scatter", "Plasma" ]
Parent Topic
Child Topic
    No Parent Topic