language-icon Old Web
English
Sign In

Alpha wave

Alpha waves are neural oscillations in the frequency range of 8–12 Hz arising from the synchronous and coherent (in phase or constructive) electrical activity of thalamic pacemaker cells in humans. They are also called Berger's waves after the founder of EEG.Sometimes it's claimed Jell-O brainwaves are identical to a healthy adult's. That's clearly a stretch, but the Jell-O EEG readings do look pretty similar to a normal human alpha rhythm. Alpha waves are observed when a patient is awake and resting with eyes closed, and in some kinds of sleep and reversible coma. True, the Jell-O waves are a little slower and of much lower amplitude, barely within normal human limits, but that doesn't tell you much by itself. Hypoxia, encephalitis, and other medical conditions can cause reduced frequency and amplitude, as can drug use. Alpha waves are neural oscillations in the frequency range of 8–12 Hz arising from the synchronous and coherent (in phase or constructive) electrical activity of thalamic pacemaker cells in humans. They are also called Berger's waves after the founder of EEG. Alpha waves are one type of brain waves detected either by electroencephalography (EEG) or magnetoencephalography (MEG), and can be quantified using quantitative electroencephalography (qEEG). They predominantly originate from the occipital lobe during wakeful relaxation with closed eyes. Alpha waves are reduced with open eyes, drowsiness and sleep. Historically, they were thought to represent the activity of the visual cortex in an idle state. More recent papers have argued that they inhibit areas of the cortex not in use, or alternatively that they play an active role in network coordination and communication. Occipital alpha waves during periods of eyes closed are the strongest EEG brain signals. An alpha-like variant called a mu wave can be found over the primary motor cortex. Alpha waves were discovered by German neurologist Hans Berger, the inventor of the EEG itself. Alpha waves were among the first waves documented by Berger, along with beta waves, and he displayed an interest in 'alpha blockage', the process by which alpha waves decrease and beta waves increase upon a subject opening their eyes. This distinction earned the alpha wave the alternate title of 'Berger's Wave'. Berger took a cue from Ukrainian physiologist Vladimir Pravdich-Neminsky, who used a string galvanometer to create a photograph of the electrical activity of a dog's brain. Using similar techniques, Berger confirmed the existence of electrical activity in the human brain. He first did this by presenting a stimulus to hospital patients with skull damage and measuring the electrical activity in their brains. Later he ceased the stimulus method and began measuring the natural rhythmic electrical cycles in the brain. The first natural rhythm he documented was what would become known as the alpha wave. Berger was very thorough and meticulous in his data-gathering, but despite his brilliance, he did not feel confident enough to publish his discoveries until at least five years after he had made them. In 1929, he published his first findings on alpha waves in the journal Archiv für Psychiatrie. He was originally met with derision for his EEG technique and his subsequent alpha and beta wave discoveries. His technique and findings did not gain widespread acceptance in the psychological community until 1937, when he gained the approval of the famous physiologist Lord Adrian, who took a particular interest in alpha waves. Alpha waves again gained recognition in the early 1960s and 1970s with the creation of a biofeedback theory relating to brain waves (see below). Such biofeedback, referred to as a kind of neurofeedback, relating to alpha waves is the conscious elicitation of alpha brainwaves by a subject. Two researchers in the United States explored this concept through unrelated experiments. Joe Kamiya, of the University of Chicago, discovered that some individuals had the conscious ability to recognize when they were creating alpha waves, and could increase their alpha activity. These individuals were motivated through a reward system from Kamiya. The second progenitor of biofeedback is Barry Sterman, from the University of California, Los Angeles. He was working with monitoring brain waves in cats and found that, when the cats were trained to withhold motor movement, they released SMR, or mu, waves, a wave similar to alpha waves. Using a reward system, he further trained these cats to enter this state more easily. Later, he was approached by the United States Air Force to test the effects of a jet fuel that was known to cause seizures in humans. Sterman tested the effects of this fuel on the previously-trained cats, and discovered that they had a higher resistance to seizures than non-trained cats. Alpha wave biofeedback has gained interest for having some successes in humans for seizure suppression and for treatment of depression.

[ "Alpha (ethology)", "Electroencephalography", "Beta wave" ]
Parent Topic
Child Topic
    No Parent Topic