Industrial applications of nanotechnology

Nanotechnology is impacting the field of consumer goods, several products that incorporate nanomaterials are already in a variety of items; many of which people do not even realize contain nanoparticles, products with novel functions ranging from easy-to-clean to scratch-resistant. Examples of that car bumpers are made lighter, clothing is more stain repellant, sunscreen is more radiation resistant, synthetic bones are stronger, cell phone screens are lighter weight, glass packaging for drinks leads to a longer shelf-life, and balls for various sports are made more durable. Using nanotech, in the mid-term modern textiles will become 'smart', through embedded 'wearable electronics', such novel products have also a promising potential especially in the field of cosmetics, and has numerous potential applications in heavy industry. Nanotechnology is predicted to be a main driver of technology and business in this century and holds the promise of higher performance materials, intelligent systems and new production methods with significant impact for all aspects of society. Nanotechnology is impacting the field of consumer goods, several products that incorporate nanomaterials are already in a variety of items; many of which people do not even realize contain nanoparticles, products with novel functions ranging from easy-to-clean to scratch-resistant. Examples of that car bumpers are made lighter, clothing is more stain repellant, sunscreen is more radiation resistant, synthetic bones are stronger, cell phone screens are lighter weight, glass packaging for drinks leads to a longer shelf-life, and balls for various sports are made more durable. Using nanotech, in the mid-term modern textiles will become 'smart', through embedded 'wearable electronics', such novel products have also a promising potential especially in the field of cosmetics, and has numerous potential applications in heavy industry. Nanotechnology is predicted to be a main driver of technology and business in this century and holds the promise of higher performance materials, intelligent systems and new production methods with significant impact for all aspects of society. A complex set of engineering and scientific challenges in the food and bioprocessing industry for manufacturing high quality and safe food through efficient and sustainable means can be solved through nanotechnology. Bacteria identification and food quality monitoring using biosensors; intelligent, active, and smart food packaging systems; nanoencapsulation of bioactive food compounds are few examples of emerging applications of nanotechnology for the food industry. Nanotechnology can be applied in the production, processing, safety and packaging of food. A nanocomposite coating process could improve food packaging by placing anti-microbial agents directly on the surface of the coated film.Nanocomposites could increase or decrease gas permeability of different fillers as is needed for different products. They can also improve the mechanical and heat-resistance properties and lower the oxygen transmission rate. Research is being performed to apply nanotechnology to the detection of chemical and biological substances for sensanges in foods. In general, food substances are not allowed to be adulterated, according to the Food, Drug and Cosmetic Act (section 402). Additives to food must conform to all regulations in the food additives amendment of 1958 as well as the FDA Modernization Act of 1997. In addition, color additives are obliged to comply with all regulations stipulated by the Color Additive Amendments of 1960. A safety assessment must be performed on all food substances for submission and approval by the US FDA. The mandatory information in this assessment includes the identity, technical effects, self-limiting levels of use, dietary exposure and safety studies for the manufacturing processes used, including the use of nanotechnology. Food manufacturers are obliged to assess whether the identity, safety or regulatory status of a food substance is affected by significant changes in manufacturing processes, such as the use of nanotechnology. In their guidance document published in April 2012, the US FDA discusses what considerations and recommendations may apply to such an assessment. New foods are among the nanotechnology-created consumer products coming onto the market at the rate of 3 to 4 per week, according to the Project on Emerging Nanotechnologies (PEN), based on an inventory it has drawn up of 609 known or claimed nano-products. On PEN's list are three foods—a brand of canola cooking oil called Canola Active Oil, a tea called Nanotea and a chocolate diet shake called Nanoceuticals Slim Shake Chocolate. According to company information posted on PEN's Web site, the canola oil, by Shemen Industries of Israel, contains an additive called 'nanodrops' designed to carry vitamins, minerals and phytochemicals through the digestive system and urea. The shake, according to U.S. manufacturer RBC Life Sciences Inc., uses cocoa infused 'NanoClusters' to enhance the taste and health benefits of cocoa without the need for extra sugar. The most prominent application of nanotechnology in the household is self-cleaning or 'easy-to-clean' surfaces on ceramics or glasses. Nanoceramic particles have improved the smoothness and heat resistance of common household equipment such as the flat iron. The first sunglasses using protective and anti-reflective ultrathin polymer coatings are on the market. For optics, nanotechnology also offers scratch resistant surface coatings based on nanocomposites. Nano-optics could allow for an increase in precision of pupil repair and other types of laser eye surgery. The use of engineered nanofibers already makes clothes water- and stain-repellent or wrinkle-free. Textiles with a nanotechnological finish can be washed less frequently and at lower temperatures. Nanotechnology has been used to integrate tiny carbon particles membrane and guarantee full-surface protection from electrostatic charges for the wearer. Many other applications have been developed by research institutions such as the Textiles Nanotechnology Laboratory at Cornell University, and the UK's Dstl and its spin out company P2i. One field of application is in sunscreens. The traditional chemical UV protection approach suffers from its poor long-term stability. A sunscreen based on mineral nanoparticles such as titanium oxide offer several advantages. Titanium oxide nanoparticles have a comparable UV protection property as the bulk material, but lose the cosmetically undesirable whitening as the particle size is decreased. Nanotechnology may also play a role in sports such as soccer, football, and baseball. Materials for new athletic shoes may be made in order to make the shoe lighter (and the athlete faster). Baseball bats already on the market are made with carbon nanotubes that reinforce the resin, which is said to improve its performance by making it lighter. Other items such as sport towels, yoga mats, exercise mats are on the market and used by players in the National Football League, which use antimicrobial nanotechnology to prevent parasuram from illnesses caused by bacteria such as Methicillin-resistant Staphylococcus aureus (commonly known as MRSA).

[ "Food engineering", "Impact of nanotechnology", "Applications of nanotechnology", "Health impact of nanotechnology" ]
Parent Topic
Child Topic
    No Parent Topic