language-icon Old Web
English
Sign In

Methyl isocyanate

Methyl isocyanate (MIC) is an organic compound with the molecular formula CH3NCO. Synonyms are isocyanatomethane, methyl carbylamine and MIC. Methyl isocyanate is an intermediate chemical in the production of carbamate pesticides (such as carbaryl, carbofuran, methomyl, and aldicarb). It has also been used in the production of rubbers and adhesives. As a highly toxic and irritating material, it is extremely hazardous to human health. It was the principal toxicant involved in the Bhopal disaster, which killed 3,787 people initially and officially 19,787 people in total. Methyl isocyanate is a colorless, poisonous, lachrymatory (tearing agent), flammable liquid. It is soluble in water to 6–10 parts per 100 parts, but it also reacts with water (see Reactions below). Methyl isocyanate is usually manufactured by the reaction of monomethylamine and phosgene. For large scale production, it is advantageous to combine these reactants at higher temperature in the gas phase. A mixture of methyl isocyanate and two moles of hydrogen chloride is formed, but N-methylcarbamoyl chloride (MCC) forms as the mixture is condensed, leaving one mole of hydrogen chloride as a gas. The methyl isocyanate is obtained by treating the MCC with a tertiary amine, such as N,N-dimethylaniline, or with pyridine or by separating it by using distillation techniques. Methyl isocyanate is also manufactured from N-methylformamide and air. In the latter process, it is immediately consumed in a closed-loop process to make methomyl. Other manufacturing methods have been reported. Methyl isocyanate reacts readily with many substances that contain N-H or O-H groups. With water, it forms 1,3-dimethylurea and carbon dioxide with the evolution of heat (325 calories per gram of MIC): At 25 °C, in excess water, half of the MIC is consumed in 9 min.; if the heat is not efficiently removed from the mixture, the rate of the reaction will increase and rapidly cause the MIC to boil. If MIC is in excess, 1,3,5-trimethylbiuret is formed along with carbon dioxide. Alcohols and phenols, which contain an O-H group, react slowly with MIC, but the reaction can be catalyzed by trialkylamines or dialkyltin dicarboxylate. Oximes, hydroxylamines, and enols also react with MIC to form methylcarbamates. These reactions produce the products described below (Uses). Ammonia, primary, and secondary amines rapidly react with MIC to form substituted ureas. Other N-H compounds, such as amides and ureas, react much more slowly with MIC.

[ "Astrobiology", "Medicinal chemistry", "Organic chemistry", "Polymer chemistry" ]
Parent Topic
Child Topic
    No Parent Topic