Burkholderia mallei is a Gram-negative, bipolar, aerobic bacterium, a human and animal pathogen of genus Burkholderia causing glanders; the Latin name of this disease (malleus) gave its name to the species causing it. It is closely related to B. pseudomallei, and by multilocus sequence typing it is a subspecies of B. pseudomallei. B. mallei evolved from B. pseudomallei by selective reduction and deletions from the B. pseudomallei genome. Unlike B. pseudomallei and other genus members, B. mallei is nonmotile; its shape is coccobacillary measuring some 1.5–3.0 μm in length and 0.5–1.0 μm in diameter with rounded ends. Wilhelm Schütz and Friedrich Löffler first isolated B. mallei in 1882. It was isolated from an infected liver and spleen of a horse. This bacterium is also one of the first to be identified containing a type VI secretion system which is important for its pathogenicity. In 1885, the German Botanist and Bacteriologist, Wilhelm Zopf (1846–1909) gave the pathogen its binomial name, after analyzing samples of the bacterium. He further refined his observations with the pathogen in 1886. Most organisms within the Burkholderiaceae live in soil; however, B. mallei does not. Because B. mallei is an obligate mammalian pathogen, it must infect a host mammal to live and to be transmitted from one host to another. B. mallei is very closely related to B. pseudomallei, being 99% identical in conserved genes when compared to B. pseudomallei. B. malllei has about 1.4 Mb less DNA than B. pseudomallei. B. mallei may have actually evolved from a strain of B. pseudomallei after the latter had infected an animal. The bacterium would have lost the genes that were not necessary for living in an animal host. This suggestion has found support from studies that compare strains of B. mallei to B. pseudomallei and indicate that their two respective genomes are very similar. The genes that allowed the bacterium to survive in a soil environment, like genes that gave B. mallei the capacity to protect against bactericidals, antibiotics, and antifungals, were likely deleted. Thus, the reason that B. mallei is not found outside of a host is because it lacks the genes necessary for survival in the soil. Genome comparisons also seem to indicate that the B. mallei is still evolving and adapting to an intracellular lifestyle. The genome of B. mallei was sequenced in the United States by The Institute of Genomic Research. The size of the genome is smaller than that of B. pseudomallei. The B. mallei sequence revealed a chromosome of 3.5 mega base pairs (Mb) and a 2.3 Mb 'megaplasmid”. Many insertion sequences and phase-variable genes were also found. The genome for B. mallei is made up of two circular chromosomes. Chromosome 1 is where genes relating to metabolism, capsule formation, and lipopolysaccharide biosynthesis are located. B. mallei has a polysaccharide capsule which indicates its potential as a pathogen. Chromosome 2 is where most of the information regarding secretion systems and virulence-associated genes are located. Multilocus sequence typing has revealed that B. mallei most likely evolved from a B. pseudomallei clone reduction. About 1000 B. pseudomellei genes are absent or varying in the B. mallei genome. B. mallei’s genome also has a large amount of insertion sequences. B. mallei was first called 'Bacillus mallei' and was in the genus Pseudomonas until the early 1990s. It has also been referred to as 'farcy'. It is now part of the genus Burkholderia. No standardised system exists for differentiating between B. mallei and B. pseudomallei. The methods that have been used to differentiate and identify one strain from the other include ribotyping, pulsed-field gel electrophoresis, multilocus enzyme electrophoresis, random amplified polymorphic DNA analysis, and multilocus sequence typing. Comparing the DNA of B. mallei and B. pseudomallei must be done at the 23S rDNA level, however, since no identifiable difference is found between the two species at the 16S rDNA level. Both B. mallei and B. pseudomallei can be cultured in a laboratory; nutrient agar can be used to grow the bacteria. When grown in culture, B. mallei grows in smooth, grey, translucent colonies. In a period of 18 hours at 37 °C, a B. mallei colony can grow to about 0.5–1.0 mm in diameter. B. mallei culture growth on MacConkey agar is variable. Many microbiologists are unfamiliar with B. mallei and as a result it has frequently been misidentified as a Pseudomonas species or as a contaminant in a culture.