language-icon Old Web
English
Sign In

Bischler–Napieralski reaction

The Bischler–Napieralski reaction is an intramolecular electrophilic aromatic substitution reaction that allows for the cyclization of β-arylethylamides or β-arylethylcarbamates. It was first discovered in 1893 by August Bischler and Bernard Napieralski, in affiliation with Basle Chemical Works and the University of Zurich. The reaction is most notably used in the synthesis of dihydroisoquinolines, which can be subsequently oxidized to isoquinolines. The Bischler–Napieralski reaction is an intramolecular electrophilic aromatic substitution reaction that allows for the cyclization of β-arylethylamides or β-arylethylcarbamates. It was first discovered in 1893 by August Bischler and Bernard Napieralski, in affiliation with Basle Chemical Works and the University of Zurich. The reaction is most notably used in the synthesis of dihydroisoquinolines, which can be subsequently oxidized to isoquinolines. Two types of mechanisms have appeared in the literature for the Bischler–Napieralski reaction. Mechanism I involves a dichlorophosphoryl imine-ester intermediate, while Mechanism II involves a nitrilium ion intermediate (both shown in brackets). This mechanistic variance stems from the ambiguity over the timing for the elimination of the carbonyl oxygen in the starting amide. In Mechanism I, the elimination occurs with imine formation after cyclization; while in Mechanism II, the elimination yields the nitrilium intermediate prior to cyclization. Currently, it is believed that different reaction conditions affect the prevalence of one mechanism over the other (see reaction conditions). In certain literature, Mechanism II is augmented with the formation of an imidoyl chloride intermediate produced by the substitution of chloride for the Lewis acid group just prior to the nitrilium ion.

[ "Stereochemistry", "Photochemistry", "Derivative (finance)", "Organic chemistry" ]
Parent Topic
Child Topic
    No Parent Topic