In telecommunications and radar, a reflective array antenna is a class of directive antennas in which multiple driven elements are mounted in front of a flat surface designed to reflect the radio waves in a desired direction. They are a type of array antenna. They are often used in the VHF and UHF frequency bands. VHF examples are generally large and resemble a highway billboard, so they are sometimes called billboard antennas, or in Britain hoarding antennas. Other names are bedspring array and bowtie array depending on the type of elements making up the antenna. The curtain array is a larger version used by shortwave radio broadcasting stations. In telecommunications and radar, a reflective array antenna is a class of directive antennas in which multiple driven elements are mounted in front of a flat surface designed to reflect the radio waves in a desired direction. They are a type of array antenna. They are often used in the VHF and UHF frequency bands. VHF examples are generally large and resemble a highway billboard, so they are sometimes called billboard antennas, or in Britain hoarding antennas. Other names are bedspring array and bowtie array depending on the type of elements making up the antenna. The curtain array is a larger version used by shortwave radio broadcasting stations. Reflective array antennas usually have a number of identical driven elements, fed in phase, in front of a flat, electrically large reflecting surface to produce a unidirectional beam of radio waves, increasing antenna gain and reducing radiation in unwanted directions. The larger the number of elements used, the higher the gain; the narrower the beam is and the smaller the sidelobes are. The individual elements are most commonly half wave dipoles, although they sometimes contain parasitic elements as well as driven elements. The reflector may be a metal sheet or more commonly a wire screen. A metal screen reflects radio waves as well as a solid metal sheet as long as the holes in the screen are smaller than about one-tenth of a wavelength, so screens are often used to reduce weight and wind loads on the antenna. They usually consist of a grill of parallel wires or rods, oriented parallel to the axis of the dipole elements. The driven elements are fed by a network of transmission lines, which divide the power from the RF source equally between the elements. This often has the circuit geometry of a tree structure. When a radio signal passes a conductor, it induces an electrical current in it. Since the radio signal fills space, and the conductor has a finite size, the induced currents add up or cancel out as they move along the conductor. A basic goal of antenna design is to make the currents add up to a maximum at the point where the energy is tapped off. To do this, the antenna elements are sized in relation to the wavelength of the radio signal, with the aim of setting up standing waves of current that are maximized at the feed point. This means that an antenna designed to receive a particular wavelength has a natural size. To improve reception, one cannot simply make the antenna larger; this will improve the amount of signal intercepted by the antenna, which is largely a function of area, but will lower the efficiency of the reception (at a given wavelength). Thus, in order to improve reception, antenna designers often use multiple elements, combining them together so their signals add up. These are known as antenna arrays. In order for the signals to add together, they need to arrive in-phase. Consider two dipole antennas placed in a line end-to-end, or collinear. If the resulting array is pointed directly at the source signal, both dipoles will see the same instantaneous signal, and thus their reception will be in-phase. However, if one were to rotate the antenna so it was at an angle to the signal, the extra path from the signal to the more distant dipole means it receives the signal slightly out of phase. When the two signals are then added up, they no longer strictly reinforce each other, and the output drops. This makes the array more sensitive horizontally, while stacking the dipoles in parallel narrows the pattern vertically. This allows the designer to tailor the reception pattern, and thus the gain, by moving the elements about. If the antenna is properly aligned with the signal, at any given instant in time, all of the elements in an array will receive the same signal and be in-phase. However, the output from each element has to be gathered up at a single feed point, and as the signals travel across the antenna to that point, their phase is changing. In a two-element array this is not a problem because the feed point can be placed between them; any phase shift taking place in the transmission lines is equal for both elements. However, if one extends this to a four-element array, this approach no longer works, as the signal from the outer pair has to travel further and will thus be at a different phase than the inner pair when it reaches the center. To ensure that they all arrive with the same phase, it is common to see additional transmission wire inserted in the signal path, or for the transmission line to be crossed over to reverse the phase if the difference is greater than 1⁄2 a wavelength. The gain can be further improved through the addition of a reflector. Generally any conductor in a flat sheet will act in a mirror-like fashion for radio signals, but this also holds true for non-continuous surfaces as long as the gaps between the conductors are less than about 1⁄10 of the target wavelength. This means that wire mesh or even parallel wires or metal bars can be used, which is especially useful both for reducing the total amount of material as well as reducing wind loads. Due to the change in signal propagation direction on reflection, the signal undergoes a reversal of phase. In order for the reflector to add to the output signal, it has to reach the elements in-phase. Generally this would require the reflector to be placed at 1⁄2 of a wavelength behind the elements, and this can be seen in many common reflector arrays like television antennas. However, there are a number of factors that can change this distance, and actual reflector positioning varies.