language-icon Old Web
English
Sign In

Stellar black hole

A stellar black hole (or stellar-mass black hole) is a black hole formed by the gravitational collapse of a star. They have masses ranging from about 5 to several tens of solar masses. The process is observed as a hypernova explosion or as a gamma ray burst. These black holes are also referred to as collapsars. A stellar black hole (or stellar-mass black hole) is a black hole formed by the gravitational collapse of a star. They have masses ranging from about 5 to several tens of solar masses. The process is observed as a hypernova explosion or as a gamma ray burst. These black holes are also referred to as collapsars. By the no-hair theorem, a black hole can only have three fundamental properties: mass, electric charge and angular momentum (spin). It is believed that black holes formed in nature all have some spin. The spin of a stellar black hole is due to the conservation of angular momentum of the star or objects that produced it. The gravitational collapse of a star is a natural process that can produce a black hole. It is inevitable at the end of the life of a star, when all stellar energy sources are exhausted. If the mass of the collapsing part of the star is below the Tolman–Oppenheimer–Volkoff (TOV) limit for neutron-degenerate matter, the end product is a compact star — either a white dwarf (for masses below the Chandrasekhar limit) or a neutron star or a (hypothetical) quark star. If the collapsing star has a mass exceeding the TOV limit, the crush will continue until zero volume is achieved and a black hole is formed around that point in space. The maximum mass that a neutron star can possess (without becoming a black hole) is not fully understood. In 1939, it was estimated at 0.7 solar masses, called the TOV limit. In 1996, a different estimate put this upper mass in a range from 1.5 to 3 solar masses. In the theory of general relativity, a black hole could exist of any mass. The lower the mass, the higher the density of matter has to be in order to form a black hole. (See, for example, the discussion in Schwarzschild radius, the radius of a black hole.) There are no known processes that can produce black holes with mass less than a few times the mass of the Sun. If black holes that small exist, they are most likely primordial black holes. Until 2016, the largest known stellar black hole was 15.65±1.45 solar masses. In September 2015, a rotating black hole of 62±4 solar masses was discovered by gravitational waves as it formed in a merger event of two smaller black holes. As of April 2008, XTE J1650-500 was reported by NASA and others to be the smallest-mass black hole currently known to science, with a mass 3.8 solar masses and a diameter of only 24 kilometers (15 miles). However, this claim was subsequently retracted. The more likely mass is 5–10 solar masses. There is observational evidence for two other types of black holes, which are much more massive than stellar black holes. They are intermediate-mass black holes (in the centre of globular clusters) and supermassive black holes in the centre of the Milky Way and other galaxies. Stellar black holes in close binary systems are observable when matter is transferred from a companion star to the black hole. The energy release in the fall toward the compact star is so large that the matter heats up to temperatures of several hundred million degrees and radiates in X-rays (X-ray astronomy). The black hole therefore is observable in X-rays, whereas the companion star can be observed with optical telescopes. The energy release for black holes and neutron stars are of the same order of magnitude. Black holes and neutron stars are often difficult to distinguish. However, neutron stars may have additional properties. They show differential rotation, and can have a magnetic field and exhibit localized explosions (thermonuclear bursts). Whenever such properties are observed, the compact object in the binary system is revealed as a neutron star. The derived masses come from observations of compact X-ray sources (combining X-ray and optical data). All identified neutron stars have a mass below 2.0 solar masses. None of the compact systems with a mass above 2.0 solar masses display the properties of a neutron star. The combination of these facts make it more and more likely that the class of compact stars with a mass above 2.0 solar masses are in fact black holes.

[ "Galaxy", "Black hole", "Primordial black hole", "X-ray burster", "Post-Newtonian expansion", "Blandford–Znajek process", "Intermediate-mass black hole" ]
Parent Topic
Child Topic
    No Parent Topic