language-icon Old Web
English
Sign In

2,3,7,8-Tetrachlorodibenzodioxin

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a polychlorinated dibenzo-p-dioxin (sometimes shortened, though inaccurately, to simply 'dioxin') with the chemical formula C12H4Cl4O2. Pure TCDD is a colorless solid with no distinguishable odor at room temperature. It is usually formed as a side product in organic synthesis and burning of organic materials. TCDD is the most potent compound (congener) of its series (polychlorinated dibenzodioxins, known as PCDDs or simply dioxins) and became known as a contaminant in Agent Orange, an herbicide used in the Vietnam War. TCDD was released into the environment in the Seveso disaster. It is a persistent organic pollutant usually present in a complex mixture of dioxin-like compounds, and is a carcinogen in rodents. The Expert Group of the World Health Organization considers developmental toxicity as the most pertinent risk of dioxins to human beings. Because people are usually exposed simultaneously to a number of dioxin-like chemicals, a more detailed account is given at dioxins and dioxin-like compounds. TCDD was classified in 1997 by the International Agency for Research on Cancer as a carcinogen for humans (group 1). In the occupational cohort studies available for the classification, the risk, even at very high exposures, was weak and borderline detectable. Therefore, human data were not deemed sufficient, and the classification was, in essence, based on animal experiments and mechanistic considerations. This has been criticized as a deviation from IARC classification rules. It is much debated whether TCDD is carcinogenic only at high doses which also cause toxic damage of tissues. Moreover, a recent review concludes that, after 1997, further studies do not support an association between TCDD exposure and cancer risk. New studies include the update of Vietnam veteran studies from Ranch Hand operation, which concluded that after 30 years the results do not provide evidence of disease. There is also direct epidemiological evidence that TCDD is not carcinogenic at low doses, and in some studies cancer risk has even decreased. This is called a J-shape dose-response, low doses decrease the risk, and only higher doses increase the risk. TCDD and dioxin-like compounds act via a specific receptor present in all cells: the aryl hydrocarbon (AH) receptor. This receptor is a transcription factor which is involved in expression of genes; in fact it has been shown that high doses of TCDD either increase or decrease the expression of several hundred genes in rats. Genes of enzymes activating the breakdown of foreign and often toxic compounds are classic examples of such genes. TCDD increases the enzymes breaking down, e.g., carcinogenic polycyclic hydrocarbons such as benzo(a)pyrene. These polycyclic hydrocarbons also activate the AH receptor, but less than TCDD and only temporarily. Even many natural compounds present in vegetables cause some activation of the AH receptor. This phenomenon can be viewed as adaptive and beneficial, because it protects the organism from toxic and carcinogenic substances. Excessive and persistent stimulation of AH receptor, however, leads to a multitude of adverse effects. The physiological function of the AH receptor has been the subject of continuous research. One obvious function is to increase the activity of enzymes breaking down foreign chemicals or normal chemicals of the body as needed. There may be other functions, however, related to growth of various organs or other regulatory functions. The AH receptor is phylogenetically highly conserved transcription factor with a history of at least 500 million years, and found in all vertebrates, and its ancient analogs are important regulatory proteins even in more primitive species. In fact, knock-out animals with no AH receptor are prone to illness and developmental problems. Taken together, this implies the necessity of a basal degree of AH receptor activation to achieve normal physiological function.

[ "Toxicity", "Polychlorinated dibenzodioxins" ]
Parent Topic
Child Topic
    No Parent Topic