language-icon Old Web
English
Sign In

Geobiology

Geobiology is a field of scientific research that explores the interactions between the physical Earth and the biosphere. It is a relatively young field, and its borders are fluid. There is considerable overlap with the fields of ecology, evolutionary biology, microbiology, paleontology, and particularly soil science and biogeochemistry. Geobiology applies the principles and methods of biology, geology, and soil science to the study of the ancient history of the co-evolution of life and Earth as well as the role of life in the modern world. Geobiologic studies tend to be focused on microorganisms, and on the role that life plays in altering the chemical and physical environment of the pedosphere, which exists at the intersection of the lithosphere, atmosphere, hydrosphere and/or cryosphere. It differs from biogeochemistry in that the focus is on processes and organisms over space and time rather than on global chemical cycles. Geobiology is a field of scientific research that explores the interactions between the physical Earth and the biosphere. It is a relatively young field, and its borders are fluid. There is considerable overlap with the fields of ecology, evolutionary biology, microbiology, paleontology, and particularly soil science and biogeochemistry. Geobiology applies the principles and methods of biology, geology, and soil science to the study of the ancient history of the co-evolution of life and Earth as well as the role of life in the modern world. Geobiologic studies tend to be focused on microorganisms, and on the role that life plays in altering the chemical and physical environment of the pedosphere, which exists at the intersection of the lithosphere, atmosphere, hydrosphere and/or cryosphere. It differs from biogeochemistry in that the focus is on processes and organisms over space and time rather than on global chemical cycles. Geobiological research synthesizes the geologic record with modern biologic studies. It deals with process - how organisms affect the Earth and vice versa - as well as history - how the Earth and life have changed together. Much research is grounded in the search for fundamental understanding, but geobiology can also be applied, as in the case of microbes that clean up oil spills. Geobiology employs molecular biology, environmental microbiology, chemical analyses, and the geologic record to investigate the evolutionary interconnectedness of life and Earth. It attempts to understand how the Earth has changed since the origin of life and what it might have been like along the way. Some definitions of geobiology even push the boundaries of this time frame - to understanding the origin of life and to the role that man has played and will continue to play in shaping the Earth in the Anthropocene. The term geobiology was coined by Lourens Baas Becking in 1934. In his words, geobiology 'is an attempt to describe the relationship between organisms and the Earth,' for 'the organism is part of the Earth and its lot is interwoven with that of the Earth.' Baas Becking's definition of geobiology was born of a desire to unify environmental biology with laboratory biology. The way he practiced it aligns closely with modern environmental microbial ecology, though his definition remains applicable to all of geobiology. In his book, Geobiology, Bass Becking stated that he had no intention of inventing a new field of study.Baas Becking's understanding of geobiology was heavily influenced by his predecessors, including Martinus Beyerinck, his teacher from the Dutch School of Microbiology. Others included Vladimir Vernadsky, who argued that life changes the surface environment of Earth in The Biosphere, his 1926 book, and Sergei Vinogradsky, famous for discovering lithotrophic bacteria. The first laboratory officially dedicated to the study of geobiology was the Baas Becking Geobiological Laboratory in Australia, which opened its doors in 1965. However, it took another 40 or so years for geobiology to become a firmly rooted scientific discipline, thanks in part to advances in geochemistry and genetics that enabled scientists to begin to synthesize the study of life and planet. In the 1930s, Alfred Treibs discovered chlorophyll-like porphyrins in petroleum, confirming its biological origin, thereby founding organic geochemistry and establishing the notion of biomarkers, a critical aspect of geobiology. But several decades passed before the tools were available to begin to search in earnest for chemical marks of life in the rocks. In the 1970s and '80s, scientists like Geoffrey Eglington and Roger Summons began to find lipid biomarkers in the rock record using equipment like GCMS. On the biology side of things, in 1977, Carl Woese and George Fox published a phylogeny of life on Earth, including a new domain - the Archaea. And in the 1990s, genetics and genomics studies became possible, broadening the scope of investigation of the interaction of life and planet. Today, geobiology has its own journals, such as Geobiology, established in 2003, and Biogeosciences, established in 2004, as well as recognition at major scientific conferences. It got its own Gordon Research Conference in 2011, a number of geobiology textbooks have been published, and many universities around the world offer degree programs in geobiology (see External links). Perhaps the most profound geobiological event is the introduction of oxygen into the atmosphere by photosynthetic bacteria. This oxygenation of Earth's primoidial atmosphere (the so-called oxygen catastrophe or Great Oxygenation Event) and the oxygenation of the oceans altered surface biogeochemical cycles and the types of organisms that have been evolutionarily selected for.

[ "Engineering geology", "Magmatism", "Palaeogeography", "Regional geology", "Economic geology" ]
Parent Topic
Child Topic
    No Parent Topic