1LV65672957264ENSG00000104918ENSMUSG00000012705Q9HD89Q99P87NM_020415NM_001193374NM_001204959NM_022984NP_001180303NP_065148NP_001191888NP_075360Resistin also known as adipose tissue-specific secretory factor (ADSF) or C/EBP-epsilon-regulated myeloid-specific secreted cysteine-rich protein (XCP1) is a cysteine-rich peptide hormone derived from adipose tissue that in humans is encoded by the RETN gene. Resistin also known as adipose tissue-specific secretory factor (ADSF) or C/EBP-epsilon-regulated myeloid-specific secreted cysteine-rich protein (XCP1) is a cysteine-rich peptide hormone derived from adipose tissue that in humans is encoded by the RETN gene. In primates, pigs, and dogs, resistin is secreted by immune and epithelial cells, while, in rodents, it is secreted by adipose tissue. The length of the resistin pre-peptide in human is 108 amino acid residues and in the mouse and rat it is 114 aa; the molecular weight is ~12.5 kDa. Resistin is an adipose-derived hormone (similar to a cytokine) whose physiologic role has been the subject of much controversy regarding its involvement with obesity and type II diabetes mellitus (T2DM). Resistin has been shown to cause 'high levels of 'bad' cholesterol (low-density lipoprotein or LDL), increasing the risk of heart disease resistin increases the production of LDL in human liver cells and also degrades LDL receptors in the liver. As a result, the liver is less able to clear 'bad' cholesterol from the body. Resistin accelerates the accumulation of LDL in arteries, increasing the risk of heart disease. resistin adversely impacts the effects of statins, the main cholesterol-reducing drug used in the treatment and prevention of cardiovascular disease.' Resistin was discovered in 2001 by the group of Dr Mitchell A. Lazar from the University of Pennsylvania School of Medicine. It was called 'resistin' because of the observed insulin resistance in mice injected with resistin. Resistin was found to be produced and released from adipose tissue to serve endocrine functions likely involved in insulin resistance. This idea primarily stems from studies demonstrating that serum resistin levels increase with obesity in several model systems (humans, rats, and mice). Since these observations, further research has linked resistin to other physiological systems such as inflammation and energy homeostasis.