language-icon Old Web
English
Sign In

Orogeny

An orogeny is an event that leads to both structural deformation and compositional differentiation of the Earth's lithosphere (crust and uppermost mantle) at convergent plate margins. An orogen or orogenic belt develops when a continental plate crumples and is pushed upwards to form one or more mountain ranges; this involves a series of geological processes collectively called orogenesis. Orogeny is the primary mechanism by which mountains are built on continents. The word 'orogeny' comes from Ancient Greek (ὄρος, óros, lit. 'mountain' + γένεσις, génesis, lit. 'creation, origin'). Although it was used before him, the term was employed by the American geologist G.K. Gilbert in 1890 to describe the process of mountain building as distinguished from epeirogeny. The formation of an orogen can be accomplished by the tectonic processes such as oceanic subduction (where a continent rides forcefully over an oceanic plate for accretionary orogeny) or continental subduction convergence of two or more continents for collisional orogeny). Orogeny usually produces long arcuate (from the Latin arcuare, 'to bend like a bow') structures, known as orogenic belts. Generally, orogenic belts consist of long parallel strips of rock exhibiting similar characteristics along the length of the belt. Although orogenic belts are associated with subduction zones, subduction tectonism may be ongoing or past processes. The subducting tectonism would consume crust, thicken lithosphere, produce earthquake and volcanoes, and build island arcs in many cases. Geologists attribute the arcuate structure to the rigidity of the descending plate, and island arc cusps relate to tears in the descending lithosphere. These island arcs may be added to a continental margin during an accretionary orogeny. On the other hand, subduction zones may be reworked at a later time due to lithospheric rifting, leading to amphibolite to granulite facies metamorphism of the thinned orogenic crust. The processes of orogeny can take tens of millions of years and build mountains from plains or from the seabed. The topographic height of orogenic mountains is related to the principle of isostasy, that is, a balance of the downward gravitational force upon an upthrust mountain range (composed of light, continental crust material) and the buoyant upward forces exerted by the dense underlying mantle. Frequently, rock formations that undergo orogeny are severely deformed and undergo metamorphism. Orogenic processes may push deeply buried rocks to the surface. Sea-bottom and near-shore material may cover some or all of the orogenic area. If the orogeny is due to two continents colliding, very high mountains can result (see Himalayas).

[ "Deformation (mechanics)", "Tectonics", "Structural basin", "Sveconorwegian orogeny", "Grenville orogeny", "Midlands Microcraton", "Orosirian", "Rhyacian" ]
Parent Topic
Child Topic
    No Parent Topic