language-icon Old Web
English
Sign In

Microburst

A microburst is an intense small-scale downdraft produced by a thunderstorm or rain shower. There are two types of microbursts: wet microbursts and dry microbursts. They go through three stages in their cycle, the downburst, outburst, and cushion stages. A microburst can be particularly dangerous to aircraft, especially during landing, due to the wind shear caused by its gust front. Several fatal and historic crashes have been attributed to the phenomenon over the past several decades, and flight crew training goes to great lengths on how to properly recover from a microburst/wind shear event.A downburst initially develops as the downdraft begins its descent from the cloud base. The downdraft accelerates, and within minutes reaches the ground (contact stage).During the outburst stage, the wind 'curls' as the cold air of the downburst moves away from the point of impact with the ground.During the cushion stage, winds about the curl continue to accelerate, while the winds at the surface slow due to friction. A microburst is an intense small-scale downdraft produced by a thunderstorm or rain shower. There are two types of microbursts: wet microbursts and dry microbursts. They go through three stages in their cycle, the downburst, outburst, and cushion stages. A microburst can be particularly dangerous to aircraft, especially during landing, due to the wind shear caused by its gust front. Several fatal and historic crashes have been attributed to the phenomenon over the past several decades, and flight crew training goes to great lengths on how to properly recover from a microburst/wind shear event. A microburst often has high winds that can knock over fully grown trees. They usually last for seconds to minutes. The term was defined by mesoscale meteorology expert Ted Fujita as affecting an area 4 km (2.5 mi) in diameter or less, distinguishing them as a type of downburst and apart from common wind shear which can encompass greater areas. Fujita also coined the term macroburst for downbursts larger than 4 km (2.5 mi). A distinction can be made between a wet microburst which consists of precipitation and a dry microburst which typically consists of virga. They generally are formed by precipitation-cooled air rushing to the surface, but they perhaps also could be powered by strong winds aloft being deflected toward the surface by dynamical processes in a thunderstorm (see rear flank downdraft). When rain falls below the cloud base or is mixed with dry air, it begins to evaporate and this evaporation process cools the air. The cool air descends and accelerates as it approaches the ground. When the cool air approaches the ground, it spreads out in all directions. High winds spread out in this type of pattern showing little or no curvature are known as straight-line winds. Dry microbursts produced by high based thunderstorms that generate little to no surface rainfall, occur in environments characterized by a thermodynamic profile exhibiting an inverted-V at thermal and moisture profile, as viewed on a Skew-T log-P thermodynamic diagram. Wakimoto (1985) developed a conceptual model (over the High Plains of the United States) of a dry microburst environment that comprised three important variables: mid-level moisture, a deep and dry adiabatic lapse rate in the sub-cloud layer, and low surface relative humidity. Wet microbursts are downbursts accompanied by significant precipitation at the surface. These downbursts rely more on the drag of precipitation for downward acceleration of parcels as well as the negative buoyancy which tend to drive 'dry' microbursts. As a result, higher mixing ratios are necessary for these downbursts to form (hence the name 'wet' microbursts). Melting of ice, particularly hail, appears to play an important role in downburst formation (Wakimoto and Bringi, 1988), especially in the lowest 1 km (0.62 mi) above ground level (Proctor, 1989). These factors, among others, make forecasting wet microbursts difficult.

[ "Wind shear", "Precipitation shaft" ]
Parent Topic
Child Topic
    No Parent Topic