Ecological forecasting uses knowledge of physics, ecology and physiology to predict how ecological populations, communities, or ecosystems will change in the future in response to environmental factors such as climate change. The ultimate goal of the approach is to provide people such as resource managers and designers of marine reserves with information that they can then use to respond, in advance, to future changes, a form of adaptation to global warming.Animals have not yet invaded 2/3 of Earth's habitats, and it could be that without human influence biodiversity will continue to increase in an exponential fashion. Ecological forecasting uses knowledge of physics, ecology and physiology to predict how ecological populations, communities, or ecosystems will change in the future in response to environmental factors such as climate change. The ultimate goal of the approach is to provide people such as resource managers and designers of marine reserves with information that they can then use to respond, in advance, to future changes, a form of adaptation to global warming. One of the most important environmental factors for organisms today is global warming. Most physiological processes are affected by temperature, and so even small changes in weather and climate can lead to large changes in the growth, reproduction and survival of animals and plants. The scientific consensus is that the increase in atmospheric greenhouse gases due to human activity caused most of the warming observed since the start of the industrial era. These changes are in turn affecting human and natural ecosystems. One major challenge is to predict where, when and with what magnitude changes are likely to occur so that we can mitigate or at least prepare for them. Ecological forecasting applies existing knowledge of how animals and plants interact with their physical environment to ask how changes in environmental factors might result in changes to the ecosystems as a whole.