language-icon Old Web
English
Sign In

Intein

An intein is a segment of a protein that is able to excise itself and join the remaining portions (the exteins) with a peptide bond in a process termed protein splicing. Inteins have also been called 'protein introns'. An intein is a segment of a protein that is able to excise itself and join the remaining portions (the exteins) with a peptide bond in a process termed protein splicing. Inteins have also been called 'protein introns'. Intein-mediated protein splicing occurs after the intein-containing mRNA has been translated into a protein. This precursor protein contains three segments—an N-extein followed by the intein followed by a C-extein. After splicing has taken place, the resulting protein contains the N-extein linked to the C-extein; this splicing product is also termed an extein. The first intein was discovered in 1988 through sequence comparison between the Neurospora crassa and carrot vacuolar ATPase (without intein) and the homologous gene in yeast (with intein) that was first described as a putative calcium ion transporter. In 1990 Hirata et al. demonstrated that the extra sequence in the yeast gene was transcribed into mRNA and removed itself from the host protein only after translation. Since then, inteins have been found in all three domains of life (eukaryotes, bacteria, and archaea) and in viruses. Many genes have unrelated intein-coding segments inserted at different positions. For these and other reasons, inteins (or more properly, the gene segments coding for inteins) are sometimes called selfish genetic elements, but it may be more accurate to call them parasitic. According to Dawkins' gene centered view of evolution, most genes are 'selfish' only insofar as to compete with other genes or alleles but usually they fulfill a function for the organisms, whereas 'parasitic genetic elements', at least initially, do not make a positive contribution to the fitness of the organism. Within the database of all known inteins (Inbase), 113 known inteins are present in eukaryotes with minimum length of 138 amino acids and maximum length of 844 amino acids. The first intein was found encoded within the VMA gene of Saccharomyces cerevisiae. They were later found in fungi (ascomycetes, basidiomycetes, zygomycetes and chytrids) and in diverse proteins as well. A protein distantly related to known inteins containing protein, but closely related to metazoan hedgehog proteins, has been described to have the intein sequence from Glomeromycota. Many of the newly described inteins contain homing endonucleases and some of these are apparently active. The abundance of intein in fungi indicates lateral transfer of intein-containing genes. While in eubacteria and archaea, there are 289 and 182 currently known inteins. Not surprisingly, most intein in eubacteria and archaea are found to be inserted into nucleic acid metabolic protein, like fungi. The mechanism for the splicing effect is a naturally occurring analogy to the technique for chemically generating medium-sized proteins called native chemical ligation, which was developed at the same time as inteins were discovered. The process begins with an N-O or N-S shift when the side chain of the first residue (a serine, threonine, or cysteine) of the intein portion of the precursor protein nucleophilically attacks the peptide bond of the residue immediately upstream (that is, the final residue of the N-extein) to form a linear ester (or thioester) intermediate. A transesterification occurs when the side chain of the first residue of the C-extein attacks the newly formed (thio)ester to free the N-terminal end of the intein. This forms a branched intermediate in which the N-extein and C-extein are attached, albeit not through a peptide bond. The last residue of the intein is always an asparagine, and the amide nitrogen atom of this side chain cleaves apart the peptide bond between the intein and the C-extein, resulting in a free intein segment with a terminal cyclic imide. Finally, the free amino group of the C-extein now attacks the (thio)ester linking the N- and C-exteins together. An O-N or S-N shift produces a peptide bond and the functional, ligated protein. Inteins are very efficient at protein splicing, and they have accordingly found an important role in biotechnology. There are more than 200 inteins identified to date; sizes range from 100–800 AAs. Inteins have been engineered for particular applications such as protein semisynthesis and the selective labeling of protein segments, which is useful for NMR studies of large proteins. Pharmaceutical inhibition of intein excision may be a useful tool for drug development; the protein that contains the intein will not carry out its normal function if the intein does not excise, since its structure will be disrupted.

[ "Recombinant DNA", "RNA splicing", "Escherichia coli", "Protein Introns", "dnaE" ]
Parent Topic
Child Topic
    No Parent Topic