language-icon Old Web
English
Sign In

Atomic theory

In chemistry and physics, atomic theory is a scientific theory of the nature of matter, which states that matter is composed of discrete units called atoms. It began as a philosophical concept in ancient Greece and entered the scientific mainstream in the early 19th century when discoveries in the field of chemistry showed that matter did indeed behave as if it were made up of atoms. The word atom comes from the Ancient Greek adjective atomos, meaning 'indivisible'. 19th century chemists began using the term in connection with the growing number of irreducible chemical elements. Around the turn of the 20th century, through various experiments with electromagnetism and radioactivity, physicists discovered that the so-called 'uncuttable atom' was actually a conglomerate of various subatomic particles (chiefly, electrons, protons and neutrons) which can exist separately from each other. In fact, in certain extreme environments, such as neutron stars, extreme temperature and pressure prevents atoms from existing at all. Since atoms were found to be divisible, physicists later invented the term 'elementary particles' to describe the 'uncuttable', though not indestructible, parts of an atom. The field of science which studies subatomic particles is particle physics, and it is in this field that physicists hope to discover the true fundamental nature of matter. The idea that matter is made up of discrete units is a very old idea, appearing in many ancient cultures such as Greece and India. The word 'atom' (Greek: ἄτομος; atomos), meaning 'uncuttable', was coined by the Pre-Socratic Greek philosophers Leucippus and his pupil Democritus (c. 460 – c. 370 BC). Democritus taught that atoms were infinite in number, uncreated, and eternal, and that the qualities of an object result from the kind of atoms that compose it. Democritus's atomism was refined and elaborated by the later Greek philosopher Epicurus (341 – 270 BC), and by the Roman Epicurean poet Lucretius (c. 99 – c. 55 BC). During the Early Middle Ages, atomism was mostly forgotten in western Europe. During the 12th century, atomism became known again in western Europe through references to it in the newly-rediscovered writings of Aristotle. In the 14th century, the rediscovery of major works describing atomist teachings, including Lucretius's De rerum natura and Diogenes Laërtius's Lives and Opinions of Eminent Philosophers, led to increased scholarly attention on the subject. Nonetheless, because atomism was associated with the philosophy of Epicureanism, which contradicted orthodox Christian teachings, belief in atoms was not considered acceptable by most European philosophers. The French Catholic priest Pierre Gassendi (1592 – 1655) revived Epicurean atomism with modifications, arguing that atoms were created by God and, though extremely numerous, are not infinite. Gassendi's modified theory of atoms was popularized in France by the physician François Bernier (1620 – 1688) and in England by the natural philosopher Walter Charleton (1619 – 1707). The chemist Robert Boyle (1627 – 1691) and the physicist Isaac Newton (1642 – 1727) both defended atomism and, by the end of the 17th century, it had become accepted by portions of the scientific community. Near the end of the 18th century, two laws about chemical reactions emerged without referring to the notion of an atomic theory. The first was the law of conservation of mass, closely associated with the work of Antoine Lavoisier, which states that the total mass in a chemical reaction remains constant (that is, the reactants have the same mass as the products). The second was the law of definite proportions. First established by the French chemist Joseph Louis Proust in 1799, this law states that if a compound is broken down into its constituent chemical elements, then the masses of the constituents will always have the same proportions by weight, regardless of the quantity or source of the original substance. John Dalton studied and expanded upon this previous work and defended a new idea, later known as the law of multiple proportions: if the same two elements can be combined to form a number of different compounds, then the ratios of the masses of the two elements in their various compounds will be represented by small whole numbers. For example, Proust had studied tin oxides and found that there is one type of tin oxide that is 88.1% tin and 11.9% oxygen and another type that is 78.7% tin and 21.3% oxygen (these are tin(II) oxide and tin dioxide respectively). Dalton noted from these percentages that 100g of tin will combine either with 13.5g or 27g of oxygen; 13.5 and 27 form a ratio of 1:2. Dalton found several examples of such instances of integral multiple combining proportions, and asserted that the pattern was a general one. Most importantly, he noted that an atomic theory of matter could elegantly explain this law, as well as Proust's law of definite proportions. For example, in the case of Proust's tin oxides, one tin atom will combine with either one or two oxygen atoms to form either the first or the second oxide of tin. Dalton believed atomic theory could explain why water absorbed different gases in different proportions - for example, he found that water absorbed carbon dioxide far better than it absorbed nitrogen. Dalton hypothesized this was due to the differences in mass and complexity of the gases' respective particles. Indeed, carbon dioxide molecules (CO2) are heavier and larger than nitrogen molecules (N2).

[ "Electron", "Atom", "Period 1 element" ]
Parent Topic
Child Topic
    No Parent Topic