language-icon Old Web
English
Sign In

Myxosoma cerebralis

Myxobolus cerebralis is a myxosporean parasite of salmonids (salmon, trout, and their allies) that causes whirling disease in farmed salmon and trout and also in wild fish populations. It was first described in rainbow trout in Germany a century ago, but its range has spread and it has appeared in most of Europe (including Russia), the United States, South Africa, Canada and other countries. In the 1980s, M. cerebralis was found to require a tubificid oligochaete (a kind of segmented worm) to complete its life cycle. The parasite infects its hosts with its cells after piercing them with polar filaments ejected from nematocyst-like capsules. Whirling disease afflicts juvenile fish (fingerlings and fry) and causes skeletal deformation and neurological damage. Fish 'whirl' forward in an awkward, corkscrew-like pattern instead of swimming normally, find feeding difficult, and are more vulnerable to predators. The mortality rate is high for fingerlings, up to 90% of infected populations, and those that do survive are deformed by the parasites residing in their cartilage and bone. They act as a reservoir for the parasite, which is released into water following the fish's death. M. cerebralis is one of the most economically important myxozoans in fish, as well as one of the most pathogenic. It was the first myxosporean whose pathology and symptoms were described scientifically. The parasite is not transmissible to humans. The taxonomy and naming of both M. cerebralis, and of myxozoans in general, have complicated histories. It was originally thought to infect fish brains (hence the specific epithet cerebralis) and nervous systems, though it soon was found to primarily infect cartilage and skeletal tissue. Attempts to change the name to Myxobolus chondrophagus, which would more accurately describe the organism, failed because of nomenclature rules. Later, the organisms previously called Triactinomyxon dubium and T. gyrosalmo (class Actinosporea) were found to be, in fact, triactinomyxon stages of M. cerebralis, the life cycle of which was expanded to include the triactinomyxon stage. Similarly, other actinosporeans were folded into the life cycles of various myxosporeans. Today, the myxozoans, previously thought to be multicellular protozoans, are considered animals by most scientists, though their status has not officially changed. Recent molecular studies suggest they are related to Bilateria or Cnidaria, with Cnidaria being closer morphologically because both groups have extrusive filaments,. Bilateria were somewhat closer in some genetic studies, but those were found to have used samples that were contaminated by material from the host organism, and a 2015 study confirms they are cnidarians. M. cerebralis has many diverse stages ranging from single cells to relatively large spores, not all of which have been studied in detail. The stages that infect fish, called triactinomyxon spores, are made of a single style that is about 150 micrometers (µm) long and three processes or 'tails', each about 200 micrometers long. A sporoplasm packet at the end of the style contains 64 germ cells surrounded by a cellular envelope. There are also three polar capsules, each of which contains a coiled polar filament between 170 and 180 µm long. Polar filaments in both this stage and in the myxospore stage (see picture above) rapidly shoot into the body of the host, creating an opening through which the sporoplasm can enter. Upon contact with fish hosts and firing of the polar capsules, the sporoplasm contained within the central style of the triactinomyxon migrates into the epithelium or gut lining. Firstly, this sporoplasm undergoes mitosis to produce more amoeboid cells, which migrate into deeper tissue layers, to reach the cerebral cartilage. Myxospores, which develop from sporogonic cell stages inside fish hosts, are lenticular. They have a diameter of about 10 micrometers and are made of six cells. Two of these cells form polar capsules, two merge to form a binucleate sporoplasm, and two form protective valves. Myxospores are infective to oligochaetes, and are found among the remains of digested fish cartilage. They are often difficult to distinguish from related species because of morphological similarities across genera. Though M. cerebralis is the only myxosporean ever found in salmonid cartilage, other visually similar species may be present in the skin, nervous system, or muscle.

[ "Aquatic animal", "Spore", "Disease", "Trout", "rainbow trout" ]
Parent Topic
Child Topic
    No Parent Topic