language-icon Old Web
English
Sign In

Trilobite

Trilobites ( /ˈtraɪləˌbaɪt, ˈtrɪ-, -loʊ-/; meaning 'three lobes') are a group of extinct marine arachnomorph arthropods that form the class Trilobita. Trilobites form one of the earliest-known groups of arthropods. The first appearance of trilobites in the fossil record defines the base of the Atdabanian stage of the Early Cambrian period (521 million years ago), and they flourished throughout the lower Paleozoic era before beginning a drawn-out decline to extinction when, during the Devonian, all trilobite orders except the Proetids died out. Trilobites disappeared in the mass extinction at the end of the Permian about 252 million years ago. The trilobites were among the most successful of all early animals, existing in oceans for almost 300 million years. By the time trilobites first appeared in the fossil record, they were already highly diversified and geographically dispersed. Because trilobites had wide diversity and an easily fossilized exoskeleton, they left an extensive fossil record, with some 50,000 known species spanning Paleozoic time. The study of these fossils has facilitated important contributions to biostratigraphy, paleontology, evolutionary biology, and plate tectonics. Trilobites are often placed within the arthropod subphylum Schizoramia within the superclass Arachnomorpha (equivalent to the Arachnata), although several alternative taxonomies are found in the literature. Trilobites had many lifestyles; some moved over the sea bed as predators, scavengers, or filter feeders, and some swam, feeding on plankton. Most lifestyles expected of modern marine arthropods are seen in trilobites, with the possible exception of parasitism (where scientific debate continues). Some trilobites (particularly the family Olenidae) are even thought to have evolved a symbiotic relationship with sulfur-eating bacteria from which they derived food. The earliest trilobites known from the fossil record are redlichiids and ptychopariid bigotinids dated to some 540 to 520 million years ago. Contenders for the earliest trilobites include Profallotaspis jakutensis (Siberia), Fritzaspis spp. (western USA), Hupetina antiqua (Morocco) and Serrania gordaensis (Spain). All trilobites are thought to have originated in present-day Siberia, with subsequent distribution and radiation from this location. All Olenellina lack facial sutures (see below), and this is thought to represent the original state. The earliest sutured trilobite found so far (Lemdadella), occurs almost at the same time as the earliest Olenellina, suggesting the trilobites origin lies before the start of the Atdabanian, but without leaving fossils. Other groups show secondary lost facial sutures, such as all Agnostina and some Phacopina. Another common feature of the Olenellina also suggests this suborder to be the ancestral trilobite stock: early protaspid stages have not been found, supposedly because these were not calcified, and this also is supposed to represent the original state. Earlier trilobites may be found and could shed more light on the origin of trilobites. Three specimens of a trilobite from Morocco, Megistaspis hammondi, dated 478 million years old contain fossilized soft parts. Early trilobites show all the features of the trilobite group as a whole; transitional or ancestral forms showing or combining the features of trilobites with other groups (e.g. early arthropods) do not seem to exist. Morphological similarities between trilobites and early arthropod-like creatures such as Spriggina, Parvancorina, and other 'trilobitomorphs' of the Ediacaran period of the Precambrian are ambiguous enough to make a detailed analysis of their ancestry complex. Morphological similarities between early trilobites and other Cambrian arthropods (e.g. the Burgess shale fauna and the Maotianshan shales fauna) make analysis of ancestral relationships difficult as well. That trilobites share a common ancestor with other arthropods before the Ediacaran-Cambrian boundary is still reasonable to assume. Evidence suggests that significant diversification had already occurred before trilobites were preserved in the fossil record, allowing for the 'sudden' appearance of diverse trilobite groups with complex derived characteristics (e.g. eyes). For such a long-lasting group of animals, it is no surprise that trilobite evolutionary history is marked by a number of extinction events where some groups perished and surviving groups diversified to fill ecological niches with comparable or unique adaptations. Generally, trilobites maintained high diversity levels throughout the Cambrian and Ordovician periods before entering a drawn-out decline in the Devonian, culminating in the final extinction of the last few survivors at the end of the Permian period.

[ "Ordovician", "Fauna", "Proetus", "Homalonotidae", "Hypodicranotus", "Ptychagnostus", "Micromitra" ]
Parent Topic
Child Topic
    No Parent Topic