language-icon Old Web
English
Sign In

Waveguide filter

A waveguide filter is an electronic filter that is constructed with waveguide technology. Waveguides are hollow metal tubes inside which an electromagnetic wave may be transmitted. Filters are devices used to allow signals at some frequencies to pass (the passband), while others are rejected (the stopband). Filters are a basic component of electronic engineering designs and have numerous applications. These include selection of signals and limitation of noise. Waveguide filters are most useful in the microwave band of frequencies, where they are a convenient size and have low loss. Examples of microwave filter use are found in satellite communications, telephone networks, and television broadcasting. A waveguide filter is an electronic filter that is constructed with waveguide technology. Waveguides are hollow metal tubes inside which an electromagnetic wave may be transmitted. Filters are devices used to allow signals at some frequencies to pass (the passband), while others are rejected (the stopband). Filters are a basic component of electronic engineering designs and have numerous applications. These include selection of signals and limitation of noise. Waveguide filters are most useful in the microwave band of frequencies, where they are a convenient size and have low loss. Examples of microwave filter use are found in satellite communications, telephone networks, and television broadcasting. Waveguide filters were developed during World War II to meet the needs of radar and electronic countermeasures, but afterwards soon found civilian applications such as use in microwave links. Much of post-war development was concerned with reducing the bulk and weight of these filters, first by using new analysis techniques that led to elimination of unnecessary components, then by innovations such as dual-mode cavities and novel materials such as ceramic resonators. A particular feature of waveguide filter design concerns the mode of transmission. Systems based on pairs of conducting wires and similar technologies have only one mode of transmission. In waveguide systems, any number of modes are possible. This can be both a disadvantage, as spurious modes frequently cause problems, and an advantage, as a dual-mode design can be much smaller than the equivalent waveguide single mode design. The chief advantages of waveguide filters over other technologies are their ability to handle high power and their low loss. The chief disadvantages are their bulk and cost when compared with technologies such as microstrip filters. There is a wide array of different types of waveguide filters. Many of them consist of a chain of coupled resonators of some kind that can be modelled as a ladder network of LC circuits. One of the most common types consists of a number of coupled resonant cavities. Even within this type, there are many subtypes, mostly differentiated by the means of coupling. These coupling types include apertures, irises, and posts. Other waveguide filter types include dielectric resonator filters, insert filters, finline filters, corrugated-waveguide filters, and stub filters. A number of waveguide components have filter theory applied to their design, but their purpose is something other than to filter signals. Such devices include impedance matching components, directional couplers, and diplexers. These devices frequently take on the form of a filter, at least in part. The common meaning of waveguide, when the term is used unqualified, is the hollow metal kind, but other waveguide technologies are possible. The scope of this article is limited to the metal-tube type. The post-wall waveguide structure is something of a variant, but is related enough to include in this article—the wave is mostly surrounded by conducting material. It is possible to construct waveguides out of dielectric rods, the most well known example being optical fibres. This subject is outside the scope of the article with the exception that dielectric rod resonators are sometimes used inside hollow metal waveguides. Transmission line technologies such as conducting wires and microstrip can be thought of as waveguides, but are not commonly called such and are also outside the scope of this article. In electronics, filters are used to allow signals of a certain band of frequencies to pass while blocking others. They are a basic building block of electronic systems and have a great many applications. Amongst the uses of waveguide filters are the construction of duplexers, diplexers, and multiplexers; selectivity and noise limitation in receivers; and harmonic distortion suppression in transmitters. Waveguides are metal conduits used to confine and direct radio signals. They are usually made of brass, but aluminium and copper are also used. Most commonly they are rectangular, but other cross-sections such as circular or elliptical are possible. A waveguide filter is a filter composed of waveguide components. It has much the same range of applications as other filter technologies in electronics and radio engineering but is very different mechanically and in principle of operation. The technology used for constructing filters is chosen to a large extent by the frequency of operation that is expected, although there is a large amount of overlap. Low frequency applications such as audio electronics use filters composed of discrete capacitors and inductors. Somewhere in the very high frequency band, designers switch to using components made of pieces of transmission line. These kinds of designs are called distributed element filters. Filters made from discrete components are sometimes called lumped element filters to distinguish them. At still higher frequencies, the microwave bands, the design switches to waveguide filters, or sometimes a combination of waveguides and transmission lines. Waveguide filters have much more in common with transmission line filters than lumped element filters; they do not contain any discrete capacitors or inductors. However, the waveguide design may frequently be equivalent (or approximately so) to a lumped element design. Indeed, the design of waveguide filters frequently starts from a lumped element design and then converts the elements of that design into waveguide components.

[ "m-derived filter", "Prototype filter", "Distributed element filter", "Waffle-iron filter" ]
Parent Topic
Child Topic
    No Parent Topic