language-icon Old Web
English
Sign In

Summation

In mathematics, summation is the addition of a sequence of any kind of numbers, called addends or summands; the result is their sum or total. Besides numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any types of mathematical objects on which an operation denoted '+' is defined. In mathematics, summation is the addition of a sequence of any kind of numbers, called addends or summands; the result is their sum or total. Besides numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any types of mathematical objects on which an operation denoted '+' is defined. Summations of infinite sequences are called series. They involve the concept of limit, and are not considered in this article. The summation of an explicit sequence is denoted as a succession of additions. For example, summation of is denoted 1 + 2 + 4 + 2, and results in 9, that is, 1 + 2 + 4 + 2 = 9. Because addition is associative and commutative, there is no need of parentheses, and the result does not depend on the order of the summands. Summation of a sequence of only one element results in this element itself. Summation of an empty sequence (a sequence with zero element) results, by convention, in 0. Very often, the elements of a sequence are defined, through regular pattern, as a function of their place in the sequence. For simple patterns, summation of long sequences may be represented with most summands replaced by ellipses. For example, summation of the first 100 natural numbers may be written 1 + 2 + 3 + 4 + ⋅⋅⋅ + 99 + 100. Otherwise, summation is denoted by using Σ notation, where ∑ {displaystyle extstyle sum } is an enlarged capital Greek letter sigma. For example, the sum of the first n natural integers is denoted ∑ i = 1 n i . {displaystyle extstyle sum _{i=1}^{n}i.} For long summations, and summations of variable length (defined with ellipses or Σ notation), it is a common problem to find closed-form expressions for the result. For example,

[ "Stimulation", "Stimulus (physiology)", "Postsynaptic Potential Summation", "Graded potential" ]
Parent Topic
Child Topic
    No Parent Topic