language-icon Old Web
English
Sign In

Primary battery

A primary cell is a battery (a galvanic cell) that is designed to be used once and discarded, and not recharged with electricity and reused like a secondary cell (rechargeable battery). In general, the electrochemical reaction occurring in the cell is not reversible, rendering the cell unrechargeable. As a primary cell is used, chemical reactions in the battery use up the chemicals that generate the power; when they are gone, the battery stops producing electricity and is useless. In contrast, in a secondary cell, the reaction can be reversed by running a current into the cell with a battery charger to recharge it, regenerating the chemical reactants. Primary cells are made in a range of standard sizes to power small household appliances such as flashlights and portable radios. A primary cell is a battery (a galvanic cell) that is designed to be used once and discarded, and not recharged with electricity and reused like a secondary cell (rechargeable battery). In general, the electrochemical reaction occurring in the cell is not reversible, rendering the cell unrechargeable. As a primary cell is used, chemical reactions in the battery use up the chemicals that generate the power; when they are gone, the battery stops producing electricity and is useless. In contrast, in a secondary cell, the reaction can be reversed by running a current into the cell with a battery charger to recharge it, regenerating the chemical reactants. Primary cells are made in a range of standard sizes to power small household appliances such as flashlights and portable radios. Primary batteries make up about 90% of the $50 billion battery market, but secondary batteries have been gaining market share. About 15 billion primary batteries are thrown away worldwide every year, virtually all ending up in landfills. Due to the toxic heavy metals and strong acids they contain, batteries are hazardous waste. Most municipalities classify them as such and require separate disposal. The energy needed to manufacture a battery is about 50 times greater than the energy it contains. Due to their high pollutant content compared to their small energy content, the primary battery is considered a wasteful, environmentally unfriendly technology. Due mainly to increasing sales of wireless devices and cordless tools which cannot be economically powered by primary batteries and come with integral rechargeable batteries, the secondary battery industry has high growth and has slowly been replacing the primary battery in high end products. In the early twenty-first century, primary cells began losing market share to secondary cells, as relative costs declined for the latter. Flashlight power demands were reduced by the switch from incandescent bulbs to light-emitting diodes. The remaining market experienced increased competition from private- or no-label versions. The market share of the two leading US manufacturers, Energizer and Duracell, declined to 37% in 2012. Along with Rayovac, these three are trying to move consumers from zinc-carbon to more expensive, long-lasting and safer alkaline batteries. Western battery manufacturers shifted production offshore and no longer make zinc-carbon batteries in the United States. China became the largest battery market, with demand projected to climb faster than anywhere else, and has also shifted to alkaline cells. In other developing countries disposable batteries must compete with cheap wind-up, wind-powered and rechargeable devices that have proliferated. Secondary cells (rechargeable batteries) are in general more economical to use than primary cells. Their initially higher cost and the purchase cost of a charging system can be spread out over many use cycles (between 100 and 1000 cycles); for example, in hand-held power tools, it would be very costly to replace a high-capacity primary battery pack every few hours of use. Primary cells aren't designed for recharging between manufacturing and use, thus have battery chemistry that has to have a much lower self-discharge rate than older types of Secondary cells, but they have lost that advantage with the development of rechargeable Secondary Cells with very low self discharge rates like Low Self Discharge NiMH cells that hold enough charge for long enough to be sold as pre-charged. Commons types of Secondary cells (namely NiMH and Li-Ion) due to their much lower internal resistance do not suffer the large loss of capacity that Alkaline, Zinc–carbon and Zinc chloride ('Heavy Duty' or 'Super Heavy Duty') do with high current draw

[ "Lithium", "Battery (electricity)", "Electrolyte" ]
Parent Topic
Child Topic
    No Parent Topic