language-icon Old Web
English
Sign In

Walden inversion

Walden inversion is the inversion of a chiral center in a molecule in a chemical reaction. Since a molecule can form two enantiomers around a chiral center, the Walden inversion converts the configuration of the molecule from one enantiomeric form to the other. For example, in an SN2 reaction, Walden inversion occurs at a tetrahedral carbon atom. It can be visualized by imagining an umbrella turned inside-out in a gale. In the Walden inversion, the backside attack by the nucleophile in an SN2 reaction gives rise to a product whose configuration is opposite to the reactant. Therefore, during SN2 reaction, 100% inversion of product takes place. This is known as Walden inversion. Walden inversion is the inversion of a chiral center in a molecule in a chemical reaction. Since a molecule can form two enantiomers around a chiral center, the Walden inversion converts the configuration of the molecule from one enantiomeric form to the other. For example, in an SN2 reaction, Walden inversion occurs at a tetrahedral carbon atom. It can be visualized by imagining an umbrella turned inside-out in a gale. In the Walden inversion, the backside attack by the nucleophile in an SN2 reaction gives rise to a product whose configuration is opposite to the reactant. Therefore, during SN2 reaction, 100% inversion of product takes place. This is known as Walden inversion. It was first observed by chemist Paul Walden in 1896. He was able to convert one enantiomer of a chemical compound into the other enantiomer and back again in a so-called Walden cycle which went like this: (+) chlorosuccinic acid (1 in scheme 1) was converted to (+) malic acid 2 by action of silver oxide in water with retention of configuration, in the next step the hydroxyl group was replaced by chlorine to the other isomer of chlorosuccinic acid 3 by reaction with phosphorus pentachloride, a second reaction with silver oxide yielded (-) malic acid 4 and finally a second reaction with PCl5 returned the cycle to its starting point. In this reaction the silver oxide in the first step acts as a hydroxide donor and the silver ion reacts with the hydrogen liberated to remove it from solution, making the reaction essentially reversible. The intermediates are the carboxyl dianion A which gives an intramolecular nucleophilic substitution to a four-membered β-lactone ring B. The other carboxyl group is also reactive but in silico data show that the transition state for the formation of the five-membered α-lactone is very high. A hydroxyl ion ring-opens the lactone back to the alcohol C and the net effect of two counts of inversion is retention of configuration.

[ "Stereochemistry", "Photochemistry", "Medicinal chemistry", "Organic chemistry", "Inorganic chemistry" ]
Parent Topic
Child Topic
    No Parent Topic