language-icon Old Web
English
Sign In

Microcontact printing

Microcontact printing (or μCP) is a form of soft lithography that uses the relief patterns on a master polydimethylsiloxane (PDMS) stamp to form patterns of self-assembled monolayers (SAMs) of ink on the surface of a substrate through conformal contact as in the case of nanotransfer printing (nTP). Its applications are wide-ranging including microelectronics, surface chemistry and cell biology. Microcontact printing (or μCP) is a form of soft lithography that uses the relief patterns on a master polydimethylsiloxane (PDMS) stamp to form patterns of self-assembled monolayers (SAMs) of ink on the surface of a substrate through conformal contact as in the case of nanotransfer printing (nTP). Its applications are wide-ranging including microelectronics, surface chemistry and cell biology. Both lithography and stamp printing have been around for centuries. However, the combination of the two gave rise to the method of microcontact printing. The method was first introduced by George M. Whitesides and Amit Kumar at Harvard University. Since its inception many methods of soft lithography have been explored. Creation of the master, or template, is done using traditional photolithography techniques. The master is typically created on silicon, but can be done on any solid patterned surface. Photoresist is applied to the surface and patterned by a photomask and UV light. The master is then baked, developed and cleaned before use. In typical processes the photoresist is usually kept on the wafer to be used as a topographic template for the stamp. However, the unprotected silicon regions can be etched, and the photoresist stripped, which would leave behind a patterned wafer for creating the stamp. This method is more complex but creates a more stable template. After fabrication the master is placed in a walled container, typically a petri dish, and the stamp is poured over the master. The PDMS stamp, in most applications, is a 10:1 ratio of silicone elastomer and a silicone elastomer curing agent. This mixture consists of a short hydrosilane crosslinker that contains a catalyst made from a platinum complex. After pouring, the PDMS is cured at elevated temperatures to create a solid polymer with elastomeric properties. The stamp is then peeled off and cut to the proper size. The stamp replicates the opposite of the master. Elevated regions of the stamp correspond to indented regions of the master. Some commercial services for procuring PDMS stamps and micropatterned samples exist such as Innopsys or Research Micro Stamps. Inking of the stamp occurs through the application of a thiol solution either by immersion or coating the stamp with a Q-tip. The highly hydrophobic PDMS material allows the ink to be diffused into the bulk of the stamp, which means the thiols reside not only on the surface, but also in the bulk of the stamp material. This diffusion into the bulk creates an ink reservoir for multiple prints. The stamp is let dry until no liquid is visible and an ink reservoir is created. Applying the stamp to the substrate is easy and straightforward which is one of the main advantages of this process. The stamp is brought into physical contact with the substrate and the thiol solution is transferred to the substrate. The thiol is area-selectively transferred to the surface based on the features of the stamp. During the transfer the carbon chains of the thiol align with each other to create a hydrophobic self-assembling monolayer (SAM).

[ "Monolayer", "Substrate (chemistry)", "Physical chemistry", "Nanotechnology", "pll g peg" ]
Parent Topic
Child Topic
    No Parent Topic