language-icon Old Web
English
Sign In

Animal cognition

Animal cognition describes the mental capacities of non-human animals and the study of those capacities. The field developed from comparative psychology, including the study of animal conditioning and learning. It has also been strongly influenced by research in ethology, behavioral ecology, and evolutionary psychology, and hence the alternative name cognitive ethology is sometimes used. Many behaviors associated with the term animal intelligence are also subsumed within animal cognition.In no case is an animal activity to be interpreted in terms of higher psychological processes if it can be fairly interpreted in terms of processes which stand lower in the scale of psychological evolution and development.Convergent evidence indicates that non-human animals have the neuroanatomical, neurochemical, and neurophysiological substrates of conscious states along with the capacity to exhibit intentional behaviors. Consequently, the weight of evidence indicates that humans are not unique in possessing the neurological substrates that generate consciousness. Non-human animals, including all mammals and birds, and many other creatures, including octopuses, also possess these neurological substrates. Animal cognition describes the mental capacities of non-human animals and the study of those capacities. The field developed from comparative psychology, including the study of animal conditioning and learning. It has also been strongly influenced by research in ethology, behavioral ecology, and evolutionary psychology, and hence the alternative name cognitive ethology is sometimes used. Many behaviors associated with the term animal intelligence are also subsumed within animal cognition. Researchers have examined animal cognition in mammals (especially primates, cetaceans, elephants, dogs, cats, pigs, horses, cattle, raccoons and rodents), birds (including parrots, fowl, corvids and pigeons), reptiles (lizards and snakes), fish and invertebrates (including cephalopods, spiders and insects). Coined by 19th-century British psychologist C. Lloyd Morgan, Morgan's Canon remains a fundamental precept of comparative (animal) psychology. In its developed form, it states that: In other words, Morgan believed that anthropomorphic approaches to animal behavior were fallacious, and that people should only consider behaviour as, for example, rational, purposive or affectionate, if there is no other explanation in terms of the behaviours of more primitive life-forms to which we do not attribute those faculties. The behavior of non-human animals has captivated human imagination from antiquity, and over the centuries many writers have speculated about the animal mind, or its absence. Speculation about animal intelligence gradually yielded to scientific study after Darwin placed humans and animals on a continuum, although Darwin's largely anecdotal approach to the topic would not pass scientific muster later on. Unsatisfied with the anecdotal method of Darwin and his protégé J. G. Romanes, E. L. Thorndike brought animal behavior into the laboratory for objective scrutiny. Thorndike's careful observations of the escape of cats, dogs, and chicks from puzzle boxes led him to conclude that what appears to the naive human observer to be intelligent behavior may be strictly attributable to simple associations. According to Thorndike, using Morgan's Canon, the inference of animal reason, insight, or consciousness is unnecessary and misleading. At about the same time, I. P. Pavlov began his seminal studies of conditioned reflexes in dogs. Pavlov quickly abandoned attempts to infer canine mental processes; such attempts, he said, led only to disagreement and confusion. He was, however, willing to propose unseen physiological processes that might explain his observations. The work of Thorndike, Pavlov and a little later of the outspoken behaviorist John B. Watson set the direction of much research on animal behavior for more than half a century. During this time there was considerable progress in understanding simple associations; notably, around 1930 the differences between Thorndike's instrumental (or operant) conditioning and Pavlov's classical (or Pavlovian) conditioning were clarified, first by Miller and Kanorski, and then by B. F. Skinner. Many experiments on conditioning followed; they generated some complex theories, but they made little or no reference to intervening mental processes. Probably the most explicit dismissal of the idea that mental processes control behavior was the radical behaviorism of Skinner. This view seeks to explain behavior, including 'private events' like mental images, solely by reference to the environmental contingencies impinging on the human or animal. Despite the predominantly behaviorist orientation of research before 1960, the rejection of mental processes in animals was not universal during those years. Influential exceptions included, for example, Wolfgang Köhler and his insightful chimpanzees and Edward Tolman whose proposed cognitive map was a significant contribution to subsequent cognitive research in both humans and animals. Beginning around 1960, a 'cognitive revolution' in research on humans gradually spurred a similar transformation of research with animals. Inference to processes not directly observable became acceptable and then commonplace. An important proponent of this shift in thinking was Donald O. Hebb, who argued that 'mind' is simply a name for processes in the head that control complex behavior, and that it is both necessary and possible to infer those processes from behavior. Animals came to be seen as 'goal seeking agents that acquire, store, retrieve, and internally process information at many levels of cognitive complexity'. The remainder of this article touches many areas of research that have appeared or greatly progressed since this seminal change in thinking, and many of the theoretical and empirical findings that have captured wide attention. The acceleration of research on animal cognition in the last 50 years or so has led to a rapid expansion in the variety of species studied and methods employed. The remarkable behavior of large-brained animals such as primates and cetacea has claimed special attention, but all sorts of mammals large and small, birds, fish, ants, bees, and others have been brought into the laboratory or observed in carefully controlled field studies. In the laboratory, animals push levers, pull strings, dig for food, swim in water mazes, or respond to images on computer screens in discrimination, attention, memory, and categorization experiments. Careful field studies explore memory for food caches, navigation by stars, communication, tool use, identification of conspecifics, and many other matters. Studies often focus on the behavior of animals in their natural environments and discuss the putative function of the behavior for the propagation and survival of the species. These developments reflect an increased cross-fertilization from related fields such as ethology and behavioral ecology. Also, contributions from behavioral neuroscience are beginning to clarify the physiological substrate of some inferred mental process.

[ "Cognition", "Two-level utilitarianism" ]
Parent Topic
Child Topic
    No Parent Topic