language-icon Old Web
English
Sign In

Constraint-induced movement therapy

Constraint-induced movement therapy (CI, CIT, or CIMT) is a form of rehabilitation therapy that improves upper extremity function in stroke and other central nervous system damage victims by increasing the use of their affected upper limb. Due to its high duration of treatment, the therapy has been found to frequently be infeasible when attempts have been made to apply it to clinical situations, and both patients and treating clinicians have reported poor compliance and concerns with patient safety. In the United States, the high duration of the therapy has also made the therapy not able to get reimbursed in most clinical environments. Constraint-induced movement therapy (CI, CIT, or CIMT) is a form of rehabilitation therapy that improves upper extremity function in stroke and other central nervous system damage victims by increasing the use of their affected upper limb. Due to its high duration of treatment, the therapy has been found to frequently be infeasible when attempts have been made to apply it to clinical situations, and both patients and treating clinicians have reported poor compliance and concerns with patient safety. In the United States, the high duration of the therapy has also made the therapy not able to get reimbursed in most clinical environments. However, distributed or 'modified' CIT protocols have enjoyed similar efficacy to CIMT, have been able to be administered in outpatient clinical environments, and have enjoyed high success rates internationally. The focus of CIMT is to combine restraint of the unaffected limb and intensive use of the affected limb. Types of restraints include a sling or triangular bandage, a splint, a sling combined with a resting hand splint, a half glove, and a mitt. Determination of the type of restraint used for therapy depends on the required level of safety vs. intensity of therapy. Some restraints restrict the wearer from using their hand and wrist, though allow use of their non-involved upper extremity for protection by extension of their arm in case of loss of balance or falls. However, restraints that allow some use of the non-involved extremity will result in less intensive practice because the non-involved arm can still be used in complete tasks. Constraint typically consists of placing a mitt on the unaffected hand or a sling or splint on the unaffected arm, forcing the use of the affected limb with the goal of promoting purposeful movements when performing functional tasks. The use of the affected limb is called shaping. Traditionally, CIMT involves restraining the unaffected arm in patients with hemiparetic stroke or hemiparetic cerebral palsy (HCP) for 90% of waking hours while engaging the affected limb in a range of everyday activities However, given concerns with compliance (both among patients and clinicians), reimbursement, and patient safety, studies have varied on hours of restraint per day and length of therapy. More specifically, CIMT involves the person performing supervised structured tasks with the affected limb 6 hours a day for 10 days over a 14-day period, in addition to wearing the restrictive mitt or sling for 90% of waking hours. Alternatively, modified constraint induced movement therapy protocols have been found to be equally effective as 'traditional' CI therapy protocols. The most established, commonly used, and evidence based form of modified CI therapy that has been found to be effective in improving motor control asks patients to attend goal directed therapy sessions lasting a half hour per day, on 3 days/week over a 10-week period. Concurrently, patients wear a mitt on the less affected limb for 5 hours/weekday during the same 10-week period. In addition to providing more practice with the affected limb than 'traditional' CI therapy over the 10-week period, the regimen is in greater accord with outpatient therapy regimens around the world, is less costly, and the efficacy has been shown to be comparable to a more intensive CI therapy schedule. Practitioners say that stroke survivors disabled for many years have recovered the use of their limbs using CIMT. However, it has been shown that receiving CIMT early on (3–9 months post-stroke) will result in greater functional gains than receiving delayed treatment (15–21 months post-stroke), with no benefits associated with its administration acutely (< 3 months post stroke). However, modified CI therapy protocols have shown larger treatment effects when administered in the acute phase. CIMT was developed by Edward Taub of the University of Alabama at Birmingham. Taub argues that, after a stroke, the patient stops using the affected limb because they are discouraged by the difficulty. As a result, a process that Taub calls 'learned non-use' sets in, furthering the deterioration. Learned non-use is a type of negative feedback. Individuals are unable to move their affected limb or the movements are inefficient and clumsy and in response to this a suppression of movement occurs. It is this process that CIMT seeks to reverse. The American Stroke Association has written that Taub's therapy is 'at the forefront of a revolution' in what is regarded possible in terms of recovery for stroke survivors. As a result of the patient engaging in repetitive exercises with the affected limb, the brain grows new neural pathways. This change in the brain is referred to as cortical reorganization or neuroplasticity. One study by Deluca et al. showed that using transcranial magnetic stimulation (TMS) that the excitable cortex of the affected cortex in adults patients with HCP doubled in size after 12 days of therapy. Recently, the possible benefits of cortical reorganization has led to studies of CIMT on children because neuroplasticity is even greater among children than adults. Particular interest is growing in CIMT for children who have cerebral palsy where one arm is more affected than the other. As with adults, however, the plausibility of administering CIMT in pediatric models is low except in specialized, for profit, clinics, due to its intensive parameters, and it has been noted that compliance is especially low in most community-dwelling children.

[ "Stroke", "Rehabilitation", "Upper limb", "motor function" ]
Parent Topic
Child Topic
    No Parent Topic