language-icon Old Web
English
Sign In

Sheaf cohomology

In mathematics, sheaf cohomology is the application of homological algebra to analyze the global sections of a sheaf on a topological space. Broadly speaking, sheaf cohomology describes the obstructions to solving a geometric problem globally when it can be solved locally. The central figure of this study is Alexander Grothendieck and his 1957 Tohoku paper. In mathematics, sheaf cohomology is the application of homological algebra to analyze the global sections of a sheaf on a topological space. Broadly speaking, sheaf cohomology describes the obstructions to solving a geometric problem globally when it can be solved locally. The central figure of this study is Alexander Grothendieck and his 1957 Tohoku paper. Sheaves, sheaf cohomology, and spectral sequences were invented by Jean Leray at the prisoner-of-war camp Oflag XVII-A in Austria. From 1940 to 1945, Leray and other prisoners organized a 'université en captivité' in the camp. Leray's definitions were simplified and clarified in the 1950s. It became clear that sheaf cohomology was not only a new approach to cohomology in algebraic topology, but also a powerful method in complex analytic geometry and algebraic geometry. These subjects often involve constructing global functions with specified local properties, and sheaf cohomology is ideally suited to such problems. Many earlier results such as the Riemann–Roch theorem and the Hodge theorem have been generalized or understood better using sheaf cohomology. The category of sheaves of abelian groups on a topological space X is an abelian category, and so it makes sense to ask when a morphism f: B → C of sheaves is injective (a monomorphism) or surjective (an epimorphism). One answer is that f is injective (resp. surjective) if and only if the associated homomorphism on stalks Bx → Cx is injective (resp. surjective) for every point x in X. It follows that f is injective if and only if the homomorphism B(U) → C(U) of sections over U is injective for every open set U in X. Surjectivity is more subtle, however: the morphism f is surjective if and only if for every open set U in X, every section s of C over U, and every point x in U, there is an open neighborhood V of x in U such that s restricted to V is the image of some section of B over V. (In words: every section of C lifts locally to sections of B.) As a result, the question arises: given a surjection B → C of sheaves and a section s of C over X, when is s the image of a section of B over X? This is a model for all kinds of local-vs.-global questions in geometry. Sheaf cohomology gives a satisfactory general answer. Namely, let A be the kernel of the surjection B → C, giving a short exact sequence of sheaves on X. Then there is a long exact sequence of abelian groups, called sheaf cohomology groups: where H0(X,A) is the group A(X) of global sections of A on X. For example, if the group H1(X,A) is zero, then this exact sequence implies that every global section of C lifts to a global section of B. More broadly, the exact sequence makes knowledge of higher cohomology groups a fundamental tool in aiming to understand sections of sheaves. Grothendieck's definition of sheaf cohomology, now standard, uses the language of homological algebra. The essential point is to fix a topological space X and think of cohomology as a functor from sheaves of abelian groups on X to abelian groups. In more detail, start with the functor E ↦ E(X) from sheaves of abelian groups on X to abelian groups. This is left exact, but in general not right exact. Then the groups Hi(X,E) for integers i are defined as the right derived functors of the functor E ↦ E(X). This makes it automatic that Hi(X,E) is zero for i < 0, and that H0(X,E) is the group E(X) of global sections. The long exact sequence above is also straightforward from this definition. The definition of derived functors uses that the category of sheaves of abelian groups on any topological space X has enough injectives; that is, for every sheaf E there is an injective sheaf I with an injection E → I. It follows that every sheaf E has an injective resolution:

[ "Equivariant cohomology", "Group cohomology", "De Rham cohomology", "Gluing axiom", "Ideal sheaf", "Grothendieck topology", "Sheaf of modules", "Euler sequence" ]
Parent Topic
Child Topic
    No Parent Topic