language-icon Old Web
English
Sign In

Heritability of autism

The heritability of autism is the proportion of differences in expression of autism that can be explained by genetic variation; if the heritability of a condition is high, then the condition is considered to be primarily genetic. Autism has a strong genetic basis, although the genetics of autism is complex and it is unclear whether autism spectrum disorder (ASD) is explained more by multigene interactions or by rare mutations with major effects.Conciatori et al.. (2004) found an association of HOXA1 with increased head circumference. A number of studies have found no association with autism. The possibility remains that single allelic variants of the HOXA1 gene are insufficient alone to trigger the developmental events in the embryo now associated with autistic spectrum conditions. Tischfield et al.. published a paper which suggests that because HOXA1 is implicated in a wide range of developmental mechanisms, a model involving multiple allelic variants of HOXA1 in particular may provide useful insights into the heritability mechanisms involved. Additionally, Ingram et al.. alighted upon additional possibilities in this arena. Transgenic mouse studies indicate that there is redundancy spread across HOX genes that complicate the issue, and that complex interactions between these genes could play a role in determining whether or not a person inheriting the requisite combinations manifests an autistic spectrum condition—transgenic mice with mutations in both HOXA1 and HOXB1 exhibit far more profound developmental anomalies than those in which only one of the genes differs from the conserved 'norm'.Mutations in the SHANK3 gene have been strongly associated with the autism spectrum disorders. If the SHANK3 gene is not adequately passed to a child from the parent (haploinsufficiency) there will possibly be significant neurological changes that are associated with yet another gene, 22q13, which interacts with SHANK3. Alteration or deletion of either will effect changes in the other.Mice with a neuroligin-3 mutation exhibit poor social skills but increased intelligence.Though not present in all individuals with autism, these mutations hold potential to illustrate some of the genetic components of spectrum disorders. However, a 2008 study found no evidence for involvement of neuroligin-3 and neuroligin-4x with high-functioning ASD.It is also known to play a key role in both normal and abnormal development, such as cancer metastases. A mutation of the gene, rendering it less active, has been found to be common amongst children with autism. Mutation in the MET gene demonstrably raises risk of autism by 2.27 times.The objective of the study was to locate specific brain cells involved in autism to find regions in the genome linked to autism susceptibility genes. The focus of the research was copy number variations (CNVs), extra or missing parts of genes. Each person does not actually have just an exact copy of genes from each parent. Each person also has occasional multiple copies of one or more genes or some genes are missing altogether. The research team attempted to locate CNVs when they scanned the DNA. The heritability of autism is the proportion of differences in expression of autism that can be explained by genetic variation; if the heritability of a condition is high, then the condition is considered to be primarily genetic. Autism has a strong genetic basis, although the genetics of autism is complex and it is unclear whether autism spectrum disorder (ASD) is explained more by multigene interactions or by rare mutations with major effects. Early studies of twins estimated the heritability of autism to be more than 90%--meaning that 90% of the differences between autistic and non-autistic individuals was due to genetics. This may be an overestimate: new twin data and models with structural genetic variation are needed. When only one identical twin is autistic, the other often has learning or social disabilities. For adult siblings, the risk of having one or more features of the broader autism phenotype might be as high as 30%, much higher than the risk in controls. Genetic linkage analysis has been inconclusive; many association analyses have had inadequate power. For each autistic individual, mutations in more than one gene may be implicated. Mutations in different sets of genes may be involved in different autistic individuals. There may be significant interactions among mutations in several genes, or between the environment and mutated genes. By identifying genetic markers inherited with autism in family studies, numerous candidate genes have been located, most of which encode proteins involved in neural development and function. However, for most of the candidate genes, the actual mutations that increase the risk for autism have not been identified. Typically, autism cannot be traced to a Mendelian (single-gene) mutation or to single chromosome abnormalities such as fragile X syndrome or 22q13 deletion syndrome. The large number of autistic individuals with unaffected family members may result from copy number variations (CNVs)—spontaneous alterations in the genetic material during meiosis that delete or duplicate genetic material. Sporadic (non-inherited) cases have been examined to identify candidate genetic loci involved in autism. A substantial fraction of autism may be highly heritable but not inherited: that is, the mutation that causes the autism is not present in the parental genome. Although the fraction of autism traceable to a genetic cause may grow to 30–40% as the resolution of array CGH improves, several results in this area have been described incautiously, possibly misleading the public into thinking that a large proportion of autism is caused by CNVs and is detectable via array CGH, or that detecting CNVs is tantamount to a genetic diagnosis. The Autism Genome Project database contains genetic linkage and CNV data that connect autism to genetic loci and suggest that every human chromosome may be involved. It may be that using autism-related subphenotypes instead of the diagnosis of autism per se may be more useful in identifying susceptible loci. Twin studies are a helpful tool in determining the heritability of disorders and human traits in general. They involve determining concordance of characteristics between identical (monozygotic or MZ) twins and between fraternal (dizygotic or DZ) twins. Possible problems of twin studies are: (1) errors in diagnosis of monozygocity, and (2) the assumption that social environment sharing by DZ twins is equivalent to that of MZ twins. A condition that is environmentally caused without genetic involvement would yield a concordance for MZ twins equal to the concordance found for DZ twins. In contrast, a condition that is completely genetic in origin would theoretically yield a concordance of 100% for MZ pairs and usually much less for DZ pairs depending on factors such as the number of genes involved and assortative mating. An example of a condition that appears to have very little if any genetic influence is irritable bowel syndrome (IBS), with a concordance of 28% vs. 27% for MZ and DZ pairs respectively. Anexample of a human characteristics that is extremely heritable is eye color, with a concordance of 98% for MZ pairs and 7–49% for DZ pairs depending on age. Identical twin studies put autism's heritability in a range between 36% and 95.7%, with concordance for a broader phenotype usually found at the higher end of the range. Autism concordance in siblings and fraternal twins is anywhere between 0 and 23.5%. This is more likely 2–4% for classic autism and 10–20% for a broader spectrum. Assuming a general-population prevalence of 0.1%, the risk of classic autism in siblings is 20- to 40-fold that of the general population.

[ "Chromosome", "Phenotype", "Autism spectrum disorder", "Developmental disorder" ]
Parent Topic
Child Topic
    No Parent Topic