language-icon Old Web
English
Sign In

Haloalkane

The haloalkanes (also known as halogenoalkanes or alkyl halides) are a group of chemical compounds derived from alkanes containing one or more halogens. They are a subset of the general class of halocarbons, although the distinction is not often made. Haloalkanes are widely used commercially and, consequently, are known under many chemical and commercial names. They are used as flame retardants, fire extinguishants, refrigerants, propellants, solvents, and pharmaceuticals. Subsequent to the widespread use in commerce, many halocarbons have also been shown to be serious pollutants and toxins. For example, the chlorofluorocarbons have been shown to lead to ozone depletion. Methyl bromide is a controversial fumigant. Only haloalkanes which contain chlorine, bromine, and iodine are a threat to the ozone layer, but fluorinated volatile haloalkanes in theory may have activity as greenhouse gases. Methyl iodide, a naturally occurring substance, however, does not have ozone-depleting properties and the United States Environmental Protection Agency has designated the compound a non-ozone layer depleter. For more information, see Halomethane. Haloalkane or alkyl halides are the compounds which have the general formula 'RX' where R is an alkyl or substituted alkyl group and X is a halogen (F, Cl, Br, I). The haloalkanes (also known as halogenoalkanes or alkyl halides) are a group of chemical compounds derived from alkanes containing one or more halogens. They are a subset of the general class of halocarbons, although the distinction is not often made. Haloalkanes are widely used commercially and, consequently, are known under many chemical and commercial names. They are used as flame retardants, fire extinguishants, refrigerants, propellants, solvents, and pharmaceuticals. Subsequent to the widespread use in commerce, many halocarbons have also been shown to be serious pollutants and toxins. For example, the chlorofluorocarbons have been shown to lead to ozone depletion. Methyl bromide is a controversial fumigant. Only haloalkanes which contain chlorine, bromine, and iodine are a threat to the ozone layer, but fluorinated volatile haloalkanes in theory may have activity as greenhouse gases. Methyl iodide, a naturally occurring substance, however, does not have ozone-depleting properties and the United States Environmental Protection Agency has designated the compound a non-ozone layer depleter. For more information, see Halomethane. Haloalkane or alkyl halides are the compounds which have the general formula 'RX' where R is an alkyl or substituted alkyl group and X is a halogen (F, Cl, Br, I). Haloalkanes have been known for centuries. Chloroethane was produced synthetically in the 15th century. The systematic synthesis of such compounds developed in the 19th century in step with the development of organic chemistry and the understanding of the structure of alkanes. Methods were developed for the selective formation of C-halogen bonds. Especially versatile methods included the addition of halogens to alkenes, hydrohalogenation of alkenes, and the conversion of alcohols to alkyl halides. These methods are so reliable and so easily implemented that haloalkanes became cheaply available for use in industrial chemistry because the halide could be further replaced by other functional groups. While most haloalkanes are human-produced, non-artificial-source haloalkanes do occur on Earth, mostly through enzyme-mediated synthesis by bacteria, fungi, and especially sea macroalgae (seaweeds). More than 1600 halogenated organics have been identified, with bromoalkanes being the most common haloalkanes. Brominated organics in biology range from biologically produced methyl bromide to non-alkane aromatics and unsaturates (indoles, terpenes, acetogenins, and phenols). Halogenated alkanes in land plants are more rare, but do occur, as for example the fluoroacetate produced as a toxin by at least 40 species of known plants. Specific dehalogenase enzymes in bacteria which remove halogens from haloalkanes, are also known. From the structural perspective, haloalkanes can be classified according to the connectivity of the carbon atom to which the halogen is attached. In primary (1°) haloalkanes, the carbon that carries the halogen atom is only attached to one other alkyl group. An example is chloroethane (CH3CH2Cl). In secondary (2°) haloalkanes, the carbon that carries the halogen atom has two C–C bonds. In tertiary (3°) haloalkanes, the carbon that carries the halogen atom has three C–C bonds. Haloalkanes can also be classified according to the type of halogen on group 7 responding to a specific halogenoalkane. Haloalkanes containing carbon bonded to fluorine, chlorine, bromine, and iodine results in organofluorine, organochlorine, organobromine and organoiodine compounds, respectively. Compounds containing more than one kind of halogen are also possible. Several classes of widely used haloalkanes are classified in this way chlorofluorocarbons (CFCs), hydrochlorofluorocarbons (HCFCs) and hydrofluorocarbons (HFCs). These abbreviations are particularly common in discussions of the environmental impact of haloalkanes. Haloalkanes generally resemble the parent alkanes in being colorless, relatively odorless, and hydrophobic. The melting and boiling points of chloro-, bromo-, and iodoalkanes are higher than the analogous alkanes, scaling with the atomic weight and number of halides. This is due to the increased strength of the intermolecular forces—from London dispersion to dipole-dipole interaction because of the increased polarizability. Thus carbon tetraiodide (CI4) is a solid whereas carbon tetrachloride (CCl4) is a liquid. Many fluoroalkanes, however, go against this trend and have lower melting and boiling points than their nonfluorinated analogues due to the decreased polarizability of fluorine. For example, methane (CH4) has a melting point of -182.5 °C whereas tetrafluoromethane has a melting point of -183.6 °C . As they contain fewer C–H bonds, halocarbons are less flammable than alkanes, and some are used in fire extinguishers. Haloalkanes are better solvents than the corresponding alkanes because of their increased polarity. Haloalkanes containing halogens other than fluorine are more reactive than the parent alkanes—it is this reactivity that is the basis of most controversies. Many are alkylating agents, with primary haloalkanes and those containing heavier halogens being the most active (fluoroalkanes do not act as alkylating agents under normal conditions). The ozone-depleting abilities of the CFCs arises from the photolability of the C–Cl bond. Haloalkanes are of wide interest because they are widespread and have diverse beneficial and detrimental impacts. The oceans are estimated to release 1-2 million tons of bromomethane annually. A large number of pharmaceuticals contain halogens, especially fluorine. An estimated one fifth of pharmaceuticals contain fluorine, including several of the most widely used drugs. Examples include 5-fluorouracil, fluoxetine (Prozac), paroxetine (Paxil), ciprofloxacin (Cipro), mefloquine, and fluconazole. The beneficial effects arise because the C-F bond is relatively unreactive. Fluorine-substituted ethers are volatile anesthetics, including the commercial products methoxyflurane, enflurane, isoflurane, sevoflurane and desflurane. Fluorocarbon anesthetics reduce the hazard of flammability with diethyl ether and cyclopropane. Perfluorinated alkanes are used as blood substitutes.

[ "Catalysis", "Enzyme" ]
Parent Topic
Child Topic
    No Parent Topic