language-icon Old Web
English
Sign In

Neural modeling fields

Neural modeling field (NMF) is a mathematical framework for machine learning which combines ideas from neural networks, fuzzy logic, and model based recognition. It has also been referred to as modeling fields, modeling fields theory (MFT), Maximum likelihood artificial neural networks (MLANS).This framework has been developed by Leonid Perlovsky at the AFRL. NMF is interpreted as a mathematical description of mind’s mechanisms, including concepts, emotions, instincts, imagination, thinking, and understanding. NMF is a multi-level, hetero-hierarchical system. At each level in NMF there are concept-models encapsulating the knowledge; they generate so-called top-down signals, interacting with input, bottom-up signals. These interactions are governed by dynamic equations, which drive concept-model learning, adaptation, and formation of new concept-models for better correspondence to the input, bottom-up signals. Neural modeling field (NMF) is a mathematical framework for machine learning which combines ideas from neural networks, fuzzy logic, and model based recognition. It has also been referred to as modeling fields, modeling fields theory (MFT), Maximum likelihood artificial neural networks (MLANS).This framework has been developed by Leonid Perlovsky at the AFRL. NMF is interpreted as a mathematical description of mind’s mechanisms, including concepts, emotions, instincts, imagination, thinking, and understanding. NMF is a multi-level, hetero-hierarchical system. At each level in NMF there are concept-models encapsulating the knowledge; they generate so-called top-down signals, interacting with input, bottom-up signals. These interactions are governed by dynamic equations, which drive concept-model learning, adaptation, and formation of new concept-models for better correspondence to the input, bottom-up signals. In the general case, NMF system consists of multiple processing levels. At each level, output signals are the concepts recognized in (or formed from) input, bottom-up signals. Input signals are associated with (or recognized, or grouped into) concepts according to the models and at this level. In the process of learning the concept-models are adapted for better representation of the input signals so that similarity between the concept-models and signals increases. This increase in similarity can be interpreted as satisfaction of an instinct for knowledge, and is felt as aesthetic emotions. Each hierarchical level consists of N 'neurons' enumerated by index n=1,2..N. These neurons receive input, bottom-up signals, X(n), from lower levels in the processing hierarchy. X(n) is a field of bottom-up neuronal synaptic activations, coming from neurons at a lower level. Each neuron has a number of synapses; for generality, each neuron activation is described as a set of numbers,

[ "Neuro-fuzzy", "Stochastic neural network", "Types of artificial neural networks", "Adaptive neuro fuzzy inference system" ]
Parent Topic
Child Topic
    No Parent Topic