language-icon Old Web
English
Sign In

Airbag

An airbag is a vehicle occupant-restraint system using a bag designed to inflate extremely quickly, then quickly deflate during a collision. It consists of the airbag cushion, a flexible fabric bag, an inflation module, and an impact sensor. The purpose of the airbag is to provide a vehicle occupant a soft cushioning and restraint during a crash event. It can reduce injuries between the flailing occupant and the interior of the vehicle. The airbag provides an energy-absorbing surface between the vehicle's occupants and a steering wheel, instrument panel, body pillar, headliner, and windshield. Modern vehicles may contain multiple airbag modules in various configurations, including, driver, passenger, side-curtain, seat-mounted side-impact, knee bolster, inflatable seat belt, front right- and left-side sensor, and pedestrian airbag modules. During a crash, the vehicle's crash sensors provide crucial information to the airbag electronic controller unit (ECU), including collision type, angle, and severity of impact. Using this information, the airbag ECU's crash algorithm determines if the crash event meets the criteria for deployment and triggers various firing circuits to deploy one or more airbag modules within the vehicle. Working as a supplemental restraint system to the vehicle's seat-belt systems, airbag module deployments are triggered through a pyrotechnic process that is designed to be used once. Newer side-impact airbag modules consist of compressed-air cylinders that are triggered in the event of a side-on vehicle impact. The first commercial designs were introduced in passenger automobiles during the 1970s, with limited success, and actually caused some fatalities. Broad commercial adoption of airbags occurred in many markets during the late 1980s and early 1990s with a driver airbag, and a front-passenger airbag, as well, on some cars, and many modern vehicles now include six or more units. {{TOC limit|3' Airbags are considered as 'passive' restraints and act as a supplement to 'active' restraints. Because no action by a vehicle occupant is required to activate or use the airbag, it is considered a 'passive' device. This is in contrast to seat belts, which are considered 'active' devices because the vehicle occupant must act to enable them. This terminology is not related to active and passive safety, which are, respectively, systems designed to prevent accidents in the first place, and systems designed to minimize the effects of accidents once they occur. In this use, a car antilock braking system qualifies as an active-safety device, while both its seatbelts and airbags qualify as passive-safety devices. Further terminological confusion can arise from the fact that passive devices and systems—those requiring no input or action by the vehicle occupant—can operate independently in an active manner; an airbag is one such device. Vehicle safety professionals are generally careful in their use of language to avoid this sort of confusion, though advertising principles sometimes prevent such semantic caution in the consumer marketing of safety features. Further confusing the terminology, the aviation safety community uses the terms 'active' and 'passive' in the opposite sense from the automotive industry. The airbag 'for the covering of aeroplane and other vehicle parts' traces its origins to a United States patent submitted in 1919 by two dentists, Harold Round & Arthur Parrott of Birmingham, England and approved in 1920. Air-filled bladders were in use as early as 1951. The airbag specifically for automobile use is credited independently to the American John W. Hetrick, who filed for an airbag patent on 5 August 1952, that was granted #2,649,311 by the United States Patent Office on 18 August 1953. German engineer Walter Linderer, who filed German patent #896,312 on 6 October 1951, was issued on 12 November 1953, approximately three months after American John Hetrick. Hetrick and Linderer's airbags were both based on a compressed air system, either released by spring, bumper contact, or by the driver. Later research during the 1960s showed that compressed air could not inflate the mechanical airbags fast enough to ensure maximum safety, leading to the current chemical and electrical airbags. In patent applications, manufacturers sometimes use the term 'inflatable occupant restraint systems'.

[ "Structural engineering", "Mechanical engineering", "Thermodynamics", "Automotive engineering", "Front seat passenger", "Airbag deployment", "Motor vehicle airbag", "Front airbag", "Lateral airbag" ]
Parent Topic
Child Topic
    No Parent Topic