language-icon Old Web
English
Sign In

Misinformation effect

The misinformation effect happens when a person's recall of episodic memories becomes less accurate because of post-event information. For example, in a study published in 1994, subjects were initially shown one of two different series of slides that depicted a college student at the university bookstore, with different objects of the same type changed in some slides. One version of the slides would, for example, show a screwdriver while the other would show a wrench, and the audio narrative accompanying the slides would only refer to the object as a 'tool'. In the second phase, subjects would read a narrative description of the events in the slides, except this time a specific tool was named, which would be the incorrect tool half the time. Finally, in the third phase, subjects had to list five examples of specific types of objects, such as tools, but were told to only list examples which they had not seen in the slides. Subjects who had read an incorrect narrative were far less likely to list the written object (which they hadn't actually seen) than the control subjects (28% vs. 43%), and were far more likely to incorrectly list the item which they had actually seen (33% vs. 26%). The misinformation effect happens when a person's recall of episodic memories becomes less accurate because of post-event information. For example, in a study published in 1994, subjects were initially shown one of two different series of slides that depicted a college student at the university bookstore, with different objects of the same type changed in some slides. One version of the slides would, for example, show a screwdriver while the other would show a wrench, and the audio narrative accompanying the slides would only refer to the object as a 'tool'. In the second phase, subjects would read a narrative description of the events in the slides, except this time a specific tool was named, which would be the incorrect tool half the time. Finally, in the third phase, subjects had to list five examples of specific types of objects, such as tools, but were told to only list examples which they had not seen in the slides. Subjects who had read an incorrect narrative were far less likely to list the written object (which they hadn't actually seen) than the control subjects (28% vs. 43%), and were far more likely to incorrectly list the item which they had actually seen (33% vs. 26%). The misinformation effect is a prime example of retroactive interference which occurs when information presented later interferes with the ability to retain previously encoded information. Essentially, the new information that a person receives works backward in time to distort memory of the original event. The misinformation effect has been studied since the mid-1970s. Elizabeth Loftus is one of the most influential researchers in the field. It reflects two of the cardinal sins of memory: suggestibility, the influence of others' expectations on our memory; and misattribution, information attributed to an incorrect source. Research on the misinformation effect has uncovered concerns about the permanence and reliability of memory. Loftus, Miller, and Burns (1978) conducted the original misinformation effect study. Participants were shown a series of slides, one of which featured a car stopping in front of a stop sign. After viewing the slides, participants read a description of what they saw. Some of the participants were given descriptions that contained misinformation, which stated that the car stopped at a yield sign. Following the slides and the reading of the description, participants were tested on what they saw. The results revealed that participants who were exposed to such misinformation were more likely to report seeing a yield sign than participants who were not misinformed. Similar methods continue to be used in misinformation effect studies. Today, standard methods involve showing subjects an event, usually in the form of a slideshow or video. The event is followed by a time delay and introduction of post-event information. Finally, participants are retested on their memory of the original event. This original study by Loftus et al. paved the way for multiple replications of the effect in order to test things like what specific processes cause the effect to occur in the first place and how individual differences influence susceptibility to the effect. Functional magnetic resonance imaging (fMRI) from 2010 pointed to certain brain areas which were especially active when false memories were retrieved. participants studied photos during an fMRI. Later, they viewed sentences describing the photographs, some of which contained information conflicting with the photographs, i.e. misinformation. One day later, participants returned for a surprise item memory recognition test on the content of the photographs. Results showed that some participants created false memories, reporting the verbal misinformation conflicting with the photographs. During the original event phase, increased activity in left fusiform gyrus and right temporal/occipital cortex was found which may have reflected the attention to visual detail,associated with later accurate memory for the critical item(s) and thus resulted in resistance to the effects of later misinformation. Retrieval of true memories was associated with greater reactivation of sensory-specific cortices, for example, the occipital cortex for vision.. Electroencephalography research on this issue also suggests that the retrieval of false memories is associated with reduced attention and recollection related processing relative to true memories. It is important to note that not everyone is equally susceptible to the misinformation effect. Individual traits and qualities can either increase or decrease one's susceptibility to recalling misinformation. Such traits and qualities include: age, working memory capacity, personality traits and imagery abilities. Several studies have focused on the influence of the misinformation effect on various age groups. Young children are more susceptible than older children and adults to the misinformation effect. Additionally, elderly adults are more susceptible than younger adults. Individuals with greater working memory capacity are better able to establish a more coherent image of an original event. Participants performed a dual task: simultaneously remembering a word list and judging the accuracy of arithmetic statements. Participants who were more accurate on the dual task were less susceptible to the misinformation effect. This, in turn, allowed them to reject the misinformation. The Myers Briggs Type Indicator is one type of test used to assess participant personalities. Individuals were presented with the same misinformation procedure as that used in the original Loftus et al. study in 1978 (see above). The results were evaluated in regards to their personality type. Introvert-intuitive participants were more likely to accept both accurate and inaccurate postevent information than extrovert-sensate participants. Therefore, it was speculated that introverts are more likely to have lower confidence in their memory and are more likely to accept misinformation. Individual personality characteristics, including empathy, absorption and self-monitoring, have also been linked to greater susceptibility.

[ "Suggestibility", "False memory" ]
Parent Topic
Child Topic
    No Parent Topic