language-icon Old Web
English
Sign In

Cannabinoid receptor type 1

Cannabinoid receptor type 1 (CB1), also known as cannabinoid receptor 1, is a G protein-coupled cannabinoid receptor that in humans is encoded by the CNR1 gene. The human CB1 receptor is expressed in the peripheral nervous system and central nervous system. It is activated by: endocannabinoids, a group of retrograde neurotransmitters that include anandamide and 2-arachidonoylglycerol (2-AG); plant phytocannabinoids, such as the compound THC which is an active ingredient of the psychoactive drug cannabis; and, synthetic analogs of THC. CB1 is antagonized by the phytocannabinoid tetrahydrocannabivarin (THCV). The primary endogenous agonist of the human CB1 receptor is anandamide. The CB1 receptor shares the structure characteristic of all G-protein-coupled receptors, possessing seven transmembrane domains connected by three extracellular and three intracellular loops, an extracellular N-terminal tail, and an intracellular C-terminal tail. The receptor may exist as a homodimer or form heterodimers or other GPCR oligomers with different classes of G-protein-coupled receptors. Observed heterodimers include A2A–CB1, CB1–D2, OX1–CB1, while many more may only be stable enough to exist in vivo. The CB1 receptor possesses an allosteric modulatory binding site. The CB1 receptor is a pre-synaptic heteroreceptor that modulates neurotransmitter release when activated in a dose-dependent, stereoselective and pertussis toxin-sensitive manner. The CB1 receptor is activated by cannabinoids, generated naturally inside the body (endocannabinoids) or introduced into the body as cannabis or a related synthetic compound. Research suggests that the majority of CB1 receptors are coupled through Gi/o proteins. Upon activation, CB1 receptor exhibits its effects mainly through activation of Gi, which decreases intracellular cAMP concentration by inhibiting its production enzyme, adenylate cyclase, and increases mitogen-activated protein kinase (MAP kinase) concentration. Alternatively, in some rare cases CB1 receptor activation may be coupled to Gs proteins, which stimulate adenylate cyclase. cAMP is known to serve as a second messenger coupled to a variety of ion channels, including the positively influenced inwardly rectifying potassium channels (=Kir or IRK), and calcium channels, which are activated by cAMP-dependent interaction with such molecules as protein kinase A (PKA), protein kinase C (PKC), Raf-1, ERK, JNK, p38, c-fos, c-jun, and others. In terms of function, the inhibition of intracellular cAMP expression shortens the duration of pre-synaptic action potentials by prolonging the rectifying potassium A-type currents, which is normally inactivated upon phosphorylation by PKA. This inhibition grows more pronounced when considered with the effect of activated CB1 receptors to limit calcium entry into the cell, which does not occur through cAMP but by a direct G-protein-mediated inhibition. As presynaptic calcium entry is a requirement for vesicle release, this function will decrease the transmitter that enters the synapse upon release. The relative contribution of each of these two inhibitory mechanisms depends on the variance of ion channel expression by cell type. The CB1 receptor can also be modulated by allosterically synthetic ligands in a positive and negative manner. In vivo exposure to THC impairs long-term potentiation and leads to a reduction of phosphorylated CREB. In summary, CB1 receptor activity has been found to be coupled to certain ion channels, in the following manner:

[ "Endocannabinoid system", "Cannabinoid receptor", "Antagonist", "Agonist", "Cannabinoid" ]
Parent Topic
Child Topic
    No Parent Topic