language-icon Old Web
English
Sign In

Triode

A triode is an electronic amplifying vacuum tube (or valve in British English) consisting of three electrodes inside an evacuated glass envelope: a heated filament or cathode, a grid, and a plate (anode). Developed from Lee De Forest's 1906 Audion, a partial vacuum tube that added a grid electrode to the thermionic diode (Fleming valve), the triode was the first practical electronic amplifier and the ancestor of other types of vacuum tubes such as the tetrode and pentode. Its invention founded the electronics age, making possible amplified radio technology and long-distance telephony. Triodes were widely used in consumer electronics devices such as radios and televisions until the 1970s, when transistors replaced them. Today, their main remaining use is in high-power RF amplifiers in radio transmitters and industrial RF heating devices. In recent years there has been a resurgence in demand for low power triodes due to renewed interest in tube-type audio systems by audiophiles who prefer the sound of tube-based electronics. A triode is an electronic amplifying vacuum tube (or valve in British English) consisting of three electrodes inside an evacuated glass envelope: a heated filament or cathode, a grid, and a plate (anode). Developed from Lee De Forest's 1906 Audion, a partial vacuum tube that added a grid electrode to the thermionic diode (Fleming valve), the triode was the first practical electronic amplifier and the ancestor of other types of vacuum tubes such as the tetrode and pentode. Its invention founded the electronics age, making possible amplified radio technology and long-distance telephony. Triodes were widely used in consumer electronics devices such as radios and televisions until the 1970s, when transistors replaced them. Today, their main remaining use is in high-power RF amplifiers in radio transmitters and industrial RF heating devices. In recent years there has been a resurgence in demand for low power triodes due to renewed interest in tube-type audio systems by audiophiles who prefer the sound of tube-based electronics. The name 'triode' was coined by British physicist William Eccles sometime around 1920, derived from the Greek τρίοδος, tríodos, from tri- (three) and hodós (road, way), originally meaning the place where three roads meet. Before thermionic valves were invented, Philipp Lenard used the principle of grid control while conducting photoelectric experiments in 1902. The first vacuum tube used in radio was the thermionic diode or Fleming valve, invented by John Ambrose Fleming in 1904 as a detector for radio receivers. It was an evacuated glass bulb containing two electrodes, a heated filament and a plate (anode). Triodes came about in 1906 when American engineer Lee De Forest and Austrian physicist Robert von Lieben independently patented tubes that added a third electrode, a grid, between the filament and plate to control current. Von Lieben's partially-evacuated three-element tube, patented in March 1906, contained a trace of mercury vapor and was intended to amplify weak telephone signals. Starting in October 1906 De Forest patented a number of three-element tube designs by adding an electrode to the diode, which he called Audions, intended to be used as radio detectors. The one which became the design of the triode, in which the grid was located between the filament and plate, was patented January 29, 1907. Like the von Lieben vacuum tube, De Forest's Audions were incompletely evacuated and contained some gas at low pressure. von Lieben's vacuum tube did not see much development due to his death 7 years after he invented it at the outbreak of World War I. De Forest's Audion did not see much use until its ability to amplify was recognized around 1912 by several researchers, who used it to build the first successful amplifying radio receivers and electronic oscillators. The many uses for amplification motivated its rapid development. By 1913 improved versions with higher vacuum were developed by Harold Arnold at American Telephone and Telegraph Company, which had purchased the rights to the Audion from De Forest, and Irving Langmuir at General Electric, who named his tube the 'Pliotron', These were the first vacuum tube triodes. The name 'triode' appeared later, when it became necessary to distinguish it from other kinds of vacuum tubes with more or fewer elements (e.g. diodes, tetrodes, pentodes, etc.). There were lengthy lawsuits between De Forest and von Lieben, and De Forest and the Marconi Company, who represented John Ambrose Fleming, the inventor of the diode. The discovery of the triode's amplifying ability in 1912 revolutionized electrical technology, creating the new field of electronics, the technology of active (amplifying) electrical devices. The triode was immediately applied to many areas of communication. Triode 'continuous wave' radio transmitters replaced the cumbersome inefficient 'damped wave' spark gap transmitters, allowing the transmission of sound by amplitude modulation (AM). Amplifying triode radio receivers, which had the power to drive loudspeakers, replaced weak crystal radios, which had to be listened to with earphones, allowing families to listen together. This resulted in the evolution of radio from a commercial message service to the first mass communication medium, with the beginning of radio broadcasting around 1920. Triodes made transcontinental telephone service possible. Vacuum tube triode repeaters, invented at Bell Telephone after its purchase of the Audion rights, allowed telephone calls to travel beyond the unamplified limit of about 800 miles. The opening by Bell of the first transcontinental telephone line was celebrated 3 years later, on January 25, 1915. Other inventions made possible by the triode were television, public address systems, electric phonographs, and talking motion pictures. The triode served as the technological base from which later vacuum tubes developed, such as the tetrode (Walter Schottky, 1916) and pentode (Gilles Holst and Bernardus Dominicus Hubertus Tellegen, 1926), which remedied some of the shortcomings of the triode detailed below. The triode was very widely used in consumer electronics such as radios, televisions, and audio systems until it was replaced in the 1960s by the transistor, invented in 1947, which brought the 'vacuum tube era' introduced by the triode to a close. Today triodes are mostly used in high-power applications for which solid state semiconductor devices are unsuitable, such as radio transmitters and industrial heating equipment. However, more recently the triode and other vacuum tube devices have been experiencing a resurgence and comeback in high fidelity audio and musical equipment. They also remain in use as vacuum fluorescent displays (VFDs), which come in a variety of implementations but all are essentially triode devices.

[ "Capacitor", "Resistor", "Voltage", "Compactron", "Pentode", "Fleming valve", "Beam tetrode", "6SN7" ]
Parent Topic
Child Topic
    No Parent Topic